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Since the introduction of Chain-of-Thought (CoT), leveraging Large Language Models (LLMs) to solve complex reasoning problems
has become possible. While an increasing number of studies focus on improving the accuracy of answers, there still lack of efficient
mechanism for errors evaluation and rectification during the reasoning process. To tackle this challenge, we propose a new strategy,
fallback prompting, to enable self-refinement of LLMs based on a feedback-driven method. Our main goal is to precisely locate and
revise errors through a backward evaluation process. We conducted experiments on seven datasets across three reasoning tasks:
arithmetic reasoning, symbolic reasoning, and knowledgeable reasoning. The results demonstrate that fallback prompting achieves
state-of-the-art performance across all datasets and models. Notably, it achieves near-perfect accuracy of 99.3% on Chinese-school-
Math with Qwen2.5 and delivers outstanding results on symbolic and knowledgeable reasoning tasks, including 91.7% accuracy
on HIST and 97.3% on CSQA with GLM4. These findings highlight the effectiveness and robustness of fallback prompting in
enhancing LLMs’ reasoning capabilities, offering a promising direction for improving reasoning accuracy through self-refinement.

Index Terms—Chain-of-Thought, Large Language Models, complex reasoning, prompt tuning, error propagation.

I. INTRODUCTION

THe emergence and rapid advancement of transformer-
based large language models (LLMs) have catalyzed a

groundbreaking transformation in the field of natural language
processing (NLP) [1]. Founded in the self-attention mechanism
[2] introduced by the transformer architecture, LLMs such as
GPT [3], BERT [4] and their successors have demonstrated an
unprecedented ability to understand [5], generate, and reason
with human language [6]. These models are pre-trained on
vast amounts of text data and fine-tuned for specific tasks [7],
enabling them to perform a wide variety of functions, from
language translation and summarization to complex reasoning
and creative content generation.

Among the numerous strategies developed to further op-
timize the performance of LLMs, Chain-of-Thought (CoT)
prompting [8] has emerged as a particularly impactful tech-
nique. CoT prompting builds on the inherent strengths of
LLMs by guiding them to reason through problems step
by step, mimicking human logical thought processes. This
structured approach not only enhances their ability to solve
complex problems, but also ensures greater accuracy and co-
herence in the generated responses. As a result, CoT prompting
has proven highly effective in a diverse range of applications,
including code generation [9], task planning, knowledge re-
trieval [10]–[12], and more [13]–[18], solidifying its role as
a cornerstone technique in the continued evolution of LLM
capabilities.

In tasks of complex reasoning, CoT prompting offers a novel
perspective of model reasoning by guiding large language
models through a coherent sequence of intermediate steps. To
obtain better results, Zhou et al. [19] introduced a prompting
strategy by decomposing a complex problem into a series of
simpler sub-problems and solving them in sequence. Zheng et
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al. [20] proposed an abstraction-and-reasoning framework to
handle complex tasks involving intricate low-level details.

Although CoT prompting has demonstrated remarkable
ability in step-by-step problem solving for various tasks, its
inherent linear and straightforward structure constrains its
ability to capture intricate contextual information. To address
this, various topological variants have been developed, offering
more sophisticated approaches to reasoning. Yao et al. [21]
proposed the Tree-of-Thought (ToT) prompting, which views
each intermediate step as a node in a tree structure. This
approach allows the models to self-evaluate the progress of
different intermediate thoughts towards the final answer, trans-
lating classical insights about problem-solving into efficient
and adaptive methods. Furthermore, Besta et al. [22] utilize the
Graph-of-Thoughts (GoT) prompting framework, modeling the
reasoning process of an LLM as a graph, allowing the model
to combine information from multiple nodes for subsequent
reasoning steps, enhancing its alignment with human logical
reasoning processes.

However, the additional complexity introduced by structural
variations multiplies the computational cost of model’s rea-
soning, limiting their practical application in real-world tasks.
More importantly, these existing methods fail to consider the
potential errors that may be arisen during the reasoning process
[23]. Specifically, errors made in intermediate reasoning steps
can result in incorrect final answers. These issues remain
significant challenges for LLMs in providing accurate answers
to complex problems.

Taking the mathematical questions as an example, when
confronted with incorrect results, humans instinctively adopt
a ”backward thinking” strategy, which guiding them metic-
ulously check each deduction step from the end to the be-
ginning, to identify the errors in reasoning process. Inspired
by this intuitive traceability mechanism, we propose Fallback
Prompting to precisely locate the erroneous reasoning step and
subsequently correct it by leveraging a systematic backward
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Fig. 1. Comparison on different baselines on Qwen2.5, where we present
results of Fallback Prompting (orange) compared with Zero-shot (green), CoT
(blue) and TDB (purple) baselines.

tracing mechanism.
Our main contributions are listed as follows:

- Motivated by human activities in error checking, we
proposed a new strategy, fallback prompting, including
problem evaluation and rectification, to guide LLMs to
provide accurate answers in multi-step reasoning tasks.

- Specifically, we conceptualize it as a bottom-up decom-
position strategy. Initially, each original question will be
broken down into a series of smaller sub-problems and we
solve them successively. It’ s different when the answer is
incorrect. When this occurs, the fallback prompting will
guide LLMs to retrace every reasoning step from the last
one and halt at the first correct step to commence the
rectification process.

- We evaluate our proposed fallback prompting on five
datasets across three categories of reasoning tasks,
including: (a) Arithmetic reasoning: GSM8K [24],
Chinese-school-Math (CM), and MMLU, (b) Symbolic
reasoning: Last-letter-concatenation (LLC) [8] and (c)
knowledgeable reasoning: Commonsense QA (CSQA)
[25]. Experimental results (Fig 1) show that the fallback
prompting effectively alleviates the challenges posed
by errors in intermediate reasoning steps and ensuring
the accuracy and robustness of the overall multi-step
reasoning framework. We believe that this technique has
the potential to significantly enhance the reliability and
efficiency of computational systems engaged in complex
reasoning tasks.

The rest of the paper is organized as follows. Section II
reviews the current state of research. Section III specifically
describes the fallback prompting from both a mathematical and
a practical perspective. Section IV presents the experimental
results and analysis. Finally, we present the conclusion and
outlook of this paper in Section V.

II. RELATED WORK

A. LLMs and emergent ability

The rapid development of Large Language Models (LLMs)
and their extensive application across various industries and
domains [28]–[30] have significantly showcased their trans-
formative potential, reflecting a shift from natural language
understanding to creative content generation and even complex
reasoning. One of the most notable aspects of LLMs is their
emergent abilities [31]. These abilities refer to the unexpected
and often impressive cognitive capabilities exhibited by LLMs
when prompted in a specific way, enabling them to solve tasks
without the need for model fine-tuning [32]. A key break-
through in harnessing these emergent abilities is the Chain-
of-Thought (CoT) prompting method, introduced by Wei et
al. [8]. CoT prompting guides the model through a series of
intermediate reasoning steps, mirroring human-like problem-
solving strategies. This step-by-step reasoning process [33]
not only facilitates the tackling of complex problems that
require multi-step thinking but also enhances the transparency
and interpretability of the model reasoning. CoT prompting
has been shown to significantly improve LLMs’ performance
across various benchmarks, especially in tasks that demand
strong and coherent logical reasoning.

Recently, researchers have expanded on the concept of
emergent abilities by exploring how these models can adapt
to new tasks with minimal or no retraining [34]–[36]. For
example, models such as GPT-4 [3] have demonstrated the
ability to perform tasks ranging from arithmetic reasoning to
symbolic manipulation, simply by being provided with the
correct prompt. This capability is a direct result of the large-
scale training these models undergo, which enables them to
generalize across a wide range of tasks, often outperforming
more specialized systems. The ability of LLMs to demonstrate
emergent reasoning abilities is closely related to the concept of
in-context learning [37], where the model can use the context
of a given task to generate answers without need for task-
specific training.

Despite these advances, a critical challenge remains in
ensuring the reliability and consistency of LLMs when applied
to more complex tasks. Although CoT prompting and other
prompting techniques [38] can improve performance, errors
still occur, especially in tasks that require high-level reasoning
or domain-specific knowledge. This is where our proposed
fallback prompting strategy aims to make a significant con-
tribution by enabling LLMs to self-correct and refine their
responses iteratively, enhancing their overall performance, and
reducing error rates during complex reasoning tasks.

B. Multi-step reasoning

Multi-step reasoning tasks, which involve solving complex
problems through a series of interconnected logical steps,
present challenges for traditional reasoning methods like
Chain-of-Thought (CoT) prompting. Although CoT prompting
has been widely recognized for its ability to guide models
through sequential reasoning steps, its linear and straightfor-
ward structure often struggles to capture the complexity of
reasoning needed for multi-step tasks. CoT prompting tends
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Sub-problem3: Keep calculating the 
amount of water Xiao Ming drank every 
day from the fourth to the seventh day. 
Sub-answer3: It is known that 720ml 
was drunk on day 3, so the amount of 
water drunk on day 4 is 720ml × 1.2 = 
864ml. Day 5:864ml × 1.2 = 1036.8ml. 
Day 6: 1036.8ml × 1.2 = 1244.16ml.
Day 7:1244.16ml × 1.2 = 1492.99ml.
Tag: 1

Sub-problem4: 
Calculate Xiao Ming's 
total water consumption.
Sub-answer4: Total 
water consumption = 
500ml + 600ml + 720ml 
+ 864ml + 1036.8ml + 
1244.16ml + 1492.99ml 
= 6457.95ml。
Tag: 1

Sub-problem2: Calculate 
the amount of water Xiao 
Ming drank on the third day.
Sub-answer2: The third 
day drank 1.2 times as 
much as the second day, 
which is known to have 
drunk 600ml × 1.2 on the 
second day. 
Tag: 10

Original Problem
Question: Xiao Ming drank 500ml of water on the first day, 1.2 times as much as the first day on the second day, and 1.2 times as much as the 
previous day on the third day, so he drank for 7 consecutive days. How many milliliters of water did he drink in total?
Final answer: 6720.752ml

Sub-problem1:How much 
did Xiao Ming drink the 
second day?
Sub-answer1: Xiao Ming 
drank 500ml of water on the 
first day, and 1.2 times as 
much on the second day, so 
the amount of water he drank 
on the second day was 500ml 
× 1.2
Tag: 0

Sub-problem2: Calculate 
the amount of water Xiao 
Ming drank on the third day.
Sub-answer2: The third 
day drank 1.2 times as 
much as the second day, 
which is known to have 
drunk 600ml× 1.2 on the 
second day.
Tag: 0

Sub-problem3: Keep calculating the 
amount of water Xiao Ming drank every 
day from the fourth to the seventh day. 
Sub-answer3: It is known that 720ml 
was drunk on day 3, so the amount of 
water drunk on day 4 is 720ml × 1.2 = 
864ml. Day 5:864ml × 1.2 = 1036.8ml. 
Day 6:1036.8ml×1.2=1240.16ml. Day 
7:1240.16ml×1.2 = 1488.192ml.
Tag: 0

Sub-problem4: 
Calculate Xiao Ming's 
total water consumption.
Sub-answer4:Total 
water consumption = 
500ml + 600ml + 720ml 
+ 864ml + 1036.8ml + 
1240.16ml + 
1488.192ml = 
6270.752ml.Tag: 0

a) Problem Evaluation

b) Error Rectification

Sub-problem3: Calculate the total number of 
vehicles passing through both bridges in a year.
Sub-answer3: Both bridges working 
concurrently means their combined monthly 
capacity is: 3,200 vehicles (new bridge) + 2,000 
vehicles (old bridge) = 5,200 vehicles/month. 
Total annual vehicles =  5,200 vehicles/month 
× 12 months = 62,400 vehicles.
Tag: 1

Sub-problem2: Calculate the 
capacity of the new bridge.
Sub-answer2: Since the 
old bridge had a capacity of 2,000 
vehicles per month. The new 
bridge has twice the capacity, so 
its monthly capacity is: 2,000×2 
= 4,000 vehicles/month.
Tag: 0

Original Problem

Question: The country of Belize had a 5 lane bridge that had 2000 vehicles passing through it every month. They decided to build a new bridge 
that had twice the capacity of the old one, and the number of vehicles passing through the new one increased by 60% more than the old bridge. If 
the bridges work concurrently for a year, calculate the total number of vehicles that pass through the two bridges?
Final answer: The answer is 72,000 vehicles.

Sub-problem3: Calculate the total number of 
vehicles passing through both bridges in a year.
Sub-answer3: Both bridges working 
concurrently means their combined monthly 
capacity is: 4,000 vehicles (new bridge) + 2,000 
vehicles (old bridge) = 6,000 vehicles/month. 
Total annual vehicles =  6,000 vehicles/month 
× 12 months = 72,000 vehicles.
Tag: 0

a) Problem Evaluation

b) Error Rectification

Sub-problem1: Calculate the increased number 
of vehicles passing through the new bridge
Sub-answer1: The increase is 60% more than 
the old bridge's capacity. Increase in vehicles for 
the new bridge = 0.60 × 2,000 = 1,200 vehicles. 
Total monthly vehicles on the new bridge = 
2,000 vehicles (old capacity) + 1,200 vehicles 
(increase) = 3,200 vehicles/month
Tag: 0

Sub-problem2: Calculate the 
capacity of the new bridge.
Sub-answer2: Since the 
the number of vehicles passing 
through the new one increased by 
60% more than the old bridge. 
The new bridge has 3,200 
vehicles/month.
Tag: 1

Tag: 10

Fig. 2. Examples of Fallback Prompting in arithmetic reasoning tasks in both Chinese and English. We apply this backward-tracing method in two stages,
including 1) Problem Evaluation and 2) Error Rectification. Top: an example (translate to English) of Chinese School Math [26], where we locate the error
at Sub-problem 3 as a calculation mistake. Bottom: an example of GSM8K [27] where the error is identified at Sub-problem 2, as it fails to correctly use
the result of Sub-problem 1.
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to be limited when problems require intricate or nonlinear
connections between steps, and its effectiveness diminishes
as the complexity of the task increases.

To address these challenges, several strategies have been
proposed. Some research address this through task decom-
position. the Least-to-Most (L2M) prompting [19] enables
the model to break down a complex problem into simpler
sub-problems and solve them sequentially. By dividing the
problem into smaller tasks, the models can reduce the overall
complexity of the original problem, making it easier to reason
through each step. However, it may face the challenge of
lacking the coherence needed to ensure that the steps are
logically connected and that the final solution fully captures
the nuances of the original problem. Take-a-Step-Back (TSB)
prompting [20] starts by looking for high-level concepts or
first principles that underlie the problem, takes a step back
before solving the problem and then works downward to solve
it. This strategy aims to ensure that the reasoning process
remains logically grounded from the beginning, addressing
the problem in a more structured and foundational way before
diving into specific details. Other studies focus on the selection
of demonstrations. Self-Consistency prompting [39] employs
a voting mechanism to choose the final reasoning path. By
predicting multiple reasoning paths and selecting the one that
is most consistent, the model can improve its chances of
producing the correct answer. Complex prompting [40], an
extension of this approach, enhances the voting system by
favoring the most complex reasoning paths among the sampled
ones. This helps ensure that the model reasoning process is
sufficiently detailed and thorough, especially for complex tasks
that require deeper insights.

We position our work in the field of multi-step reasoning
[41] and propose a bottom-up decomposition strategy based
on reverse reasoning, resulting in more accurate and coherent
problem solving.

C. Verify and refine

One of the most significant challenges in multi-step rea-
soning tasks is the generation of errors and the subsequent
propagation of these errors throughout the reasoning process.
Errors in the initial reasoning steps can have a cascading
effect, causing the model to produce incorrect results in later
stages. This issue is particularly problematic for complex tasks
where accuracy at each step is crucial for reaching the correct
final answer. The inability to trace and correct these errors
effectively can result in the model failing to deliver reliable
solutions.

In response to this challenge, Sun et al. proposed Iterative-
CoT (Iter-CoT) prompting [42]. Iter-CoT aims to address
errors generated by zero-shot CoT by introducing a revise
prompt. This mechanism allows the model to self-correct its
reasoning process by iterating over the reasoning steps, refin-
ing the output until the correct result is produced. Although
Iter-CoT improves accuracy by enabling self-refinement, it
has a potential drawback that during the correction process
the model may lose important contextual information from
the original problem, which could degrade the quality of the

reasoning at later stages. To mitigate the loss of context during
error correction, Residual-Connection (ResPrompt) prompting
[43] was introduced. ResPrompt enhances the revision pro-
cess by incorporating the necessary dependencies into the
prompt. This approach ensures that the model maintains the
relevant contextual information while revising its reasoning
path, reducing errors due to missing context. Reconstructing
the reasoning process, ResPrompt provides a more reliable
method to refine the output and address errors effectively.

Our approach builds upon these methods but focuses on
reducing the cost of self-refinement. Instead of allowing the
model to iterate through the entire reasoning process to correct
errors, our method uses a more targeted strategy. When an er-
ror is identified, we backtrack only to the reasoning step where
the first error occurred, thus limiting the scope of correction.
This approach not only reduces the cost of error correction,
but also minimizes the risk of losing context or introducing
new errors during the refinement process. By focusing on more
efficient and context-preserving error correction, our method
aims to offer a more practical solution for improving multi-
step reasoning in large language models.

III. FALLBACK PROMPTING

As shown in Figure 2, when the LLM is faced with a
complex reasoning problem that requires coherent logic (Fig-
ure 2, top, ”The total amount of water for seven consecutive
days”) or contains confusing information in the description of
the problem (Figure 2, bottom, ”the capacity of the bridge”
and ”the number of vehicles passing through the bridge”), it
may make errors during intermediate steps and Inspired by
the human-logical approach of conducting error checking in
a backward way, we propose the FALLBACK PROMPTING
method.

Before directly addressing the original problem, following
Zhou et al. [19], we guide the LLM to decompose the problem
into a series of sub-problems and solve them sequentially.
For instance, in Figure 2, we decompose “The total amount
of water over seven consecutive days” into a series of sub-
problems for determining the “accurate amount of water in
each day”. For each sub-problem, the answer to the previous
one is added to the current question as context information.
This is also the primary cause of error propagation. Building
on this process, we additionally record the answer to each sub-
problem at every stage and initialize a tag of ‘0’ for each sub-
problem, which served as a reference for fallback prompting.

Then, we summarize our fallback prompting into two stages:
1. Problem evaluation. When confronted with incorrect

results, we use a backward prompt to guide the LLM in
reviewing each deduction step, starting from the last sub-
problem and sequentially evaluating the correctness of each
answer. A tag of ’1’ will be assigned if the answer is incorrect,
with all sub-problems initially having a tag value of ’0’.
This process continues until the first correctly answered sub-
problem is found, where we update its tag to ’10’ (here, ’10’
represents the binary value 2, corresponding to the decimal
value).

2. Error rectification. In this stage, we rectify the errors
based on the tag values in stage 1. Specifically, starting from
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the sub-problem with a tag of ’10’, we sequentially revise the
answers for each subsequent.

Under this backward-tracing mechanism, we can accurately
locate errors while alleviating the cost of model reasoning.
For we only need to focus on the parts where errors occur,
which also aligns with the logic strategy of human thinking.
When an error occurs again, our proposed fallback prompting
will further narrow the search space for error localization by
focusing on sub-problems that are tagged with values other
than ‘0’.

We designed fallback prompting as a plug-and-play strategy
that, in theory, can be integrated with any existing CoT
strategies to enhance the accuracy of reasoning results.

In the following sections, we present empirical study results
of fallback prompting on a range of reasoning tasks covering
arithmetic, symbolic and knowledgeable reasoning tasks.

IV. EXPERIMENTS AND RESULTS

A. Experimental settings

Here we define the tasks and models we experiment with.
We also describe our evaluation metric and the baseline
methods we consider.

1) Tasks and datasets
We evaluate our proposal on 7 datasets from three cate-

gories of reasoning tasks including arithmetic, symbolic and
knowledgeable reasoning tasks.

TABLE I

DATASETS USED IN THIS PAPER

Domain Dataset Numbers

Arithmetic reasoning

GSM8K 100

Stats 100

Phys 100

CM 100

Symbolic reasoning LLC 100

knowledgeable reasoning
HIST 100

CSQA 100

For arithmetic reasoning, we evaluate on problems that need
multi-step to solve.

- GSM8K [27]: Grade school math word problems which
take between 2 and 8 steps to solve using basic arithmetic
operations. We randomly selected 100 instances as our
testbed and compared their results with CoT prompting.

- MMLU [44]: Multi-choice questions collected from vari-
ous examinations of 57 different subjects. Here we select
high-school statistic (Stats) and high-school physic (Phys)
as they need coherent and logical reasoning.

- CM [26]: Chinese school math quizzes and answers
generated by BELLE [45], with multi-steps to solve.
As the prior works merely focused on evaluations using
English datasets, results on Chinese datasets remain
largely under-explored.

For symbolic reasoning, we use Last-letter-concatenation
(LLC) [8], that asks the model to concatenate the last letters
of each word (e.g., the input is “Elon Musk” and the output
should be “nk”).

For knowledgeable reasoning, we evaluate on MMLU high-
school European history (HIST), where the question contains
rich and lengthy background information, and Commonsense
QA (CSQA) [46] that asking questions with complex seman-
tics that often require reasoning based on prior knowledge.

2) Model selection
We selected three open-source state-of-the-art bilingual

large language models:

- Llama3 [47]: the most capable openly available LLM to
date of Meta. The tuned versions use supervised fine-
tuning (SFT) and reinforcement learning with human
feedback (RLHF) [48] to align with human preferences
for helpfulness and safety.

- Qwen2.5 [49]: A collection of Alibaba Group’s latest
LLM family, including specialized models for coding,
Qwen2.5-Coder [50], and mathematics, Qwen2.5-Math
[51]. There is extra support for Chinese of Qwen2.5-
Math by endowing it with the abilities to perform Chain-
of-Thought(CoT), Program-of-Thoughts(PoT) [52], and
Tool-integrated-Reasoning(TIR) [53].

- GLM4 [54]: We choose a chat-optimized version of
GLM-4-9B, that trained on a multilingual corpus with
a context length of 8K tokens, and capable of extended
text reasoning up to 128K tokens.

For all LLMs, we set a unified generation configuration for
fair comparison: temperature is set to 0.8 and the top-k is
set to 5. All experiments are done in the same computation
environment with 1 NVIDIA 24GB RTX3090 GPU.

3) Baseline methods
We compare with zero-shot prompting and standard Chain-

of-Thought prompting on arithmetic reasoning tasks, where
we directly ask the LLM to answer the question or give
the simple “Let’s think step by step” instruction [33]. For
more challenging reasoning tasks, we selected the In-context
learning (ICL) prompting [55], [56], using a few (k-shots) QA
pairs as demonstrations to guide the LLM without additional
training. We also compare our method with TDB prompting
[57], an enhanced zero-shot prompting with “Take a deep
breath and work on this problem step by step.” added at the
beginning of the question. All methods in our experiments rely
on greedy decoding for inference.

4) Evaluation metrics
We randomly sample 100 instances for each task and com-

pare them with different baselines. We consider two metrics for
evaluation: (1) Traditional text evaluation metrics: where we
directly compare completeness and consistency of targets and
model predictions, and (2) Model evaluation metrics: where
we guide LLM to identify equivalence between targets and
model predictions with given evaluation prompts.

We use the value of accuracy as evaluation indicator, with
the formula:
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TABLE II
COMPARISON WITH DIFFERENT BASELINE METHODS ON ARITHMETIC REASONING TASKS

Baseline Model GSM8K Stats Phys CM LLC

Zero-shot
GLM4 86.5 40.5 53.4 87.1 38.7
Llama3 76.8 38.4 38.6 85.8 65.6

Qwen2.5 94.1 64.8 53.3 95.3 29.4

CoT
GLM4 91.2 58.1 48.7 91.7 36.2
Llama3 77.9 39.1 38.2 87.1 66.3

Qwen2.5 92.7 73.1 65.4 94.1 42.1

Ours
GLM4 98.1 92.7 92.5 99.1 76.3
Llama3 86.3 83.4 91.1 97.7 87.7

Qwen2.5 96.4 97.7 94.3 99.3 79.3

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (1)

where TP (True Positives) represents samples that are cor-
rectly predicted as positive, FP (False Positives) represents
samples that are incorrectly predicted as positive, FN (False
Negatives) represents samples that are incorrectly predicted as
negative, and TN (True Negatives) represents samples that are
correctly predicted as negative.

B. Results analysis

Table II and III provide a comprehensive comparison be-
tween our proposed method and baseline approaches across
various reasoning tasks. In the tables, the bolded values rep-
resent the best results achieved by our method on each dataset,
while the underlined values indicate the best results achieved
by other each baselines in each dataset. The results clearly
show that the proposed method consistently outperforms the
baselines, indicating its effectiveness in handling complex
reasoning tasks.

For Arithmetic Reasoning and Symbolic Reasoning tasks
(Table II), the results demonstrate that fallback prompting
achieves the highest accuracy across all datasets and mod-
els, highlighting its robustness in handling arithmetic reason-
ing tasks. Specifically, for English mathematical reasoning
datasets, GSM8K and Stats, fallback prompting consistently
outperforms the Zero-shot and CoT baselines, with particularly
significant improvements observed on Stats. In the Chinese
mathematical reasoning dataset, fallback prompting achieves
near-perfect accuracy, reaching a maximum of 99.3% with
Qwen2.5. Although the results on Phys and LLC are less
satisfactory under several baselines, fallback prompting still
significantly improves their accuracy, demonstrating its effec-
tiveness even in challenging scenarios.

For Knowledge Reasoning tasks (Table III), our proposed
method demonstrates exceptional performance, particularly
with GLM4 and Qwen2.5. For instance, with GLM4, it
achieves 91.7% on HIST, surpassing the next-best baseline,
ICL (80.1%), by more than 11 percentage points. Notably, the

highest accuracy is achieved on CSQA with GLM4, reaching
97.3%.

TABLE III
COMPARISON WITH DIFFERENT BASELINE

METHODS ON OTHER REASONING TASKS

Baseline Model HIST CSQA

Zero-shot
GLM4 73.5 88.1
Llama3 62.6 74.8

Qwen2.5 81.3 78.3

ICL
GLM4 80.1 88.6
Llama3 64.6 74.1

Qwen2.5 72.8 72.7

TDB
GLM4 80.3 89.2
Llama3 63.2 62.6

Qwen2.5 79.1 78.4

Ours
GLM4 91.7 97.3
Llama3 88.2 87.5

Qwen2.5 90.3 89.1

Moreover, we are surprised to observe the powerful capabil-
ity of Qwen2.5 in handling complex mathematical problems.
When comparing the results across both tables, under iden-
tical experimental settings, Qwen2.5 consistently outperforms
GLM4 and Llama3. Notably, its performance on arithmetic
reasoning datasets is significantly better than on symbolic
reasoning and knowledgeable reasoning datasets. Furthermore,
the results of Llama3 in different four baselines are relatively
similar, suggesting a potential limitation in its performance
variability in our selected baselines.

V. CONCLUSION

In this study, we introduced a novel strategy, fallback
prompting, to alleviate the challenge of error evaluation and
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rectification in the reasoning processes of Large Language
Models (LLMs). By leveraging a feedback-driven backward
evaluation mechanism, our method enables LLMs to refine
their reasoning capabilities iteratively.

Through extensive experiments on seven data sets for three
reasoning tasks: arithmetic reasoning, symbolic reasoning, and
knowledgeable reasoning, our approach demonstrated state-of-
the-art performance. In particular, fallback prompting achieved
a near perfect accuracy of 99. 3% on the Chinese school Math
dataset using Qwen2.5, and significantly improved results on
symbolic reasoning (e.g., 91. 7% on HIST) and knowledge-
able reasoning (e.g., 97. 3% on CSQA) with GLM4. These
improvements were consistently observed across multiple
datasets and baseline comparisons, highlighting the robustness
and adaptability of the proposed method.

Furthermore, our analysis revealed the exceptional perfor-
mance of Qwen2.5 in handling complex mathematical tasks,
significantly outperforming GLM4 and Llama3 under identical
experimental conditions. However, the relatively stable per-
formance of Llama3 at various baselines indicates potential
limitations in its capacity to vary performance.

In summary, fallback prompting offers an efficient and
effective solution for improving the reasoning accuracy of
LLMs by dynamically addressing errors. This work lays the
foundation for future research in improving the reasoning
capabilities of LLMs, with potential applications in education,
problem-solving, and other domains requiring reliable multi-
step reasoning.
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