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Radio frequency front-end (RFFE) circuit design significantly improves signal quality for demodulation and decoding in wireless
receivers. Due to the diversity and complexity of circuit designs, as well as potential distortions to signals, there is no theoretical
model to measure the impact of RFFE circuits on radio signals. To address this critical and challenging issue, we first focus on analog
filters in RFFE circuits, which directly affect signal reception and carrier recovery, and consequently influence the demodulation
error probability. In this paper, we discuss the role of analog filters in RFFE circuits and the model of their effect on signals. We
also introduce different types of distortions caused by analog filters, which are related to signal amplitude, phase, and frequency.
Based on these, we propose using the Wiener model to characterize the impact of analog filters on signals considering nonlinear
distortions. This work may shed light on developing a feasible analytical model of how RFFE circuits influence demodulation errors
at wireless receivers.

Index Terms—Wireless communication, signal distortion, RFFE circuit, analog filter, nonlinear model.

I. INTRODUCTION

S INCE the advent of wireless communication technology,
human society has undergone tremendous changes. To

support high-speed and reliable communication, modulation
technology has been proposed to utilize radio frequency
(RF) signals (frequencies between 20KHz and 300GHz) that
propagate better in the air. Different modulation schemes
support different communication rates but have corresponding
requirements for signal quality. When the signal received by
the receiver is highly distorted, or the noise component is
prominent, the probability of demodulation error will also
increase, thereby decreasing the communication quality.

The radio frequency front-end (RF front-end, or RFFE)
circuit is a core part of wireless systems, and it is located
between the antenna and the digital baseband signal circuit. At
wireless transmitters, RFFE circuits focus on delivering high-
power signals with minimal distortion to meet transmission
distance and spectral compliance requirements. At wireless re-
ceivers, RFFE circuits deal with signal amplification, filtering,
and carrier recovery, which aim to improve signal quality and
reduce demodulation errors. Generally, RFFE circuits consist
of power amplifiers, analog filters, oscillators, and mixers.

Although many works have given more approximate expres-
sions for the symbol error rate (SER) of different modulation
schemes, these results are based on ideal signals and the
basic Gaussian noise model [1], [2]. In fact, radio signals will
experience significant attenuation and moderate distortion after
passing through a wireless channel, including the impact of
multipath fading, Doppler shifts, and noise, and RFFE circuits
at receivers are designed to compensate for these effects.

For wireless channels, many mathematical models can sim-
ulate the impacts of various channels on the signal well, such
as the Rayleigh fading channel and Rician fading channel,
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providing insights into signal amplitude and phase variations
[3], [4], [5], [6], [7]. These models have been instrumental
in analyzing the communication performance of different
wireless systems and could be further applied to measure SER
in demodulation. Recent studies have extended these models
to account for complex channel environments, such as those
encountered in high-frequency bands, where multipath effects
and Doppler shifts become more pronounced [8].

Studies on electrical components such as power amplifiers,
mixers, and oscillators have focused on nonlinearity and spuri-
ous signal generation, which can significantly degrade commu-
nication performance [9], [10], [11], [12], [13]. While the role
of these components has been discussed, due to the diversity
in design and the electromagnetic characteristics of various
components, the impact of RFFE circuits on signals has also
been discussed. For instance, adaptive filtering techniques have
been proposed to address signal distortion dynamically, offer-
ing a promising direction for improving RFFE performance in
real-time environments [14], [15]. However, the mathematical
relationship between RFFE circuits and communication per-
formance, especially the demodulation error probability, has
not been studied and needs further discussion. Therefore, to
accurately characterize the SER of modulation schemes, it is
very important to establish a mathematical model of RFFE
circuits for their impact on signals.

To address this challenging issue, we can divide it into
multiple sub-problems and solve them individually. As an
important part of the RF front-end circuit, the analog filter
is responsible for filtering out-of-band noise and interference
to acquire the expected signals from transmitters. However,
analog filters could also introduce linear and nonlinear dis-
tortions and accordingly deteriorate signal quality, thereby
affecting the SER of the system [16], [17]. In [18], Mehler
et al. introduced a simplified approach to analyzing amplitude
distortion in linear-phase filters. It focused on deriving ap-
proximate solutions for passband variations, and the proposed



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 3, DECEMBER 2024 138

method reduced computational complexity and guided early
filter optimizations. However, this study does not consider
nonlinear distortions. In [19], Del Vecchio et al. presented an
analytical methodology to estimate distortion in continuous-
time filters. They employed small-signal approximations to
assess filter-based nonlinearity, and this approach enabled
designers to detect potential issues early in the circuit design
phase. While addressing certain distortion aspects, this paper
does not comprehensively model nonlinear distortions, such as
those arising from component nonlinearity or high-power sig-
nal interactions. In [20], Ismail et al. proposed an approximate
distortion analysis dedicated to active-RC filters. They inves-
tigated how component-level nonlinearity accumulates within
the filter’s transfer function. External factors like temperature
variations, power supply noise, or component aging are not
considered in this work, which can affect the accuracy and
reliability of the distortion models in practical settings.

Although the results in [18], [19], [20] offered practical
guidelines for achieving low-distortion circuit implementa-
tions, these works still have their limitations, as stated above.
Therefore, it is of great significance to further study the
impact of analog filters on system performance with linear and
nonlinear distortions. The primary contribution of this study is
that we analyze the impact of linear and nonlinear distortions
on signals introduced by analog filers and propose using the
Wiener model to build a mathematical model considering both
types of distortions, which may shed light on developing
a feasible analytical model of how RFFE circuits influence
demodulation errors at wireless receivers.

The rest of this paper is organized as follows. Section
II introduces analog filters in RFFE circuits and the system
function of filters as their system models. In Section III, we
discuss distortions potentially caused by analog filters and their
relations to system functions. Then, in Section IV, we propose
using the Wiener model to obtain a mathematical model
of analog filters considering nonlinear distortions. Finally,
Section V concludes the paper and discusses our future work.

II. LINEAR MODEL OF ANALOG FILTERS

In this section, we first introduce the role of analog filters
within a wireless RFFE circuit, illustrating what band-pass
filters (BPFs) and low-pass filters (LPFs) do in a direct con-
version receiver. Next, we describe the impulse response, fre-
quency response, and system function of linear time-invariant
(LTI) filters, highlighting their relevance to wireless signals.
Finally, we discuss the design procedure for analog filters and
how the transfer function H(s) is determined.

A. Analog Filters in Wireless RF Front-End Circuit

In wireless communications, there are different kinds of
transceiver circuit architectures, such as superheterodyne, di-
rect conversion, low intermediate frequency (IF), etc. Different
architectures exhibit their advantages and disadvantages, and
employ diverse signal processing, including filtering. Conse-
quently, different architectures require varying numbers and
types of filters. The direct conversion architecture, also known
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Fig. 1: Diagram of the direct conversion architecture.

as zero-IF, is currently the most widely used in wireless
communication systems.

The diagram of direct conversion architecture is shown in
Fig.1, and it is a wireless receiver circuit diagram using IQ
(in-phase and quadrature) modulation. The antenna receives
RF signals from the propagation media, and we first use a
BPF to get the signals within the concerned frequency band
and eliminate unexpected out-of-band noise and interference.
The filtered RF signal is then amplified by the low-noise am-
plifier (LNA) to boost the signal strength without significantly
degrading the signal-to-noise ratio (SNR).

Next, the amplified RF signal is mixed with a local oscillator
(LO) signal. In a zero-IF architecture, the LO frequency is set
equal to the RF signal frequency. This results in the direct
conversion of the RF signal to the baseband. The mixing
process generates two outputs: the in-phase and quadrature
components of the baseband signal, typically achieved by
mixing RF signals with two LO signals that are 90 degrees
out of phase.

The baseband I and Q signals (in-phase and quadrature
components) are further amplified using variable gain ampli-
fiers (VGA). VGAs adjust the signal amplitude dynamically
to match the optimal range of the analog-to-digital converter
(ADC). Since the mixing process could generate a high-
frequency component named mirror interference, an LPF is
needed to eliminate it and retain only the baseband signal.
Then, ADCs digitize the amplified and filtered analog I and
Q signals, and digitized signals undergo signal processing de-
pending on the specific communication protocol or application,
such as filtering, demodulation, and error correction.

According to the signal processing procedure above, we can
find that the BPFs and LPFs play significant roles in wireless
transceiver circuits.

B. Response Functions of Analog Filters

The objective of filters is to retain the signal in the desired
frequency band and filter out the signal at other frequencies.
Therefore, an ideal filter is a linear time-invariant (LTI) system.

LTI System: An LTI system means that the system pro-
duces an output signal from any input signal subject to the
constraints of linearity and time-invariance.

Linearity: The filter output is linearly related to the input
signal, satisfying the superposition principle. It means that if
the input signal is a linear combination of multiple signals,
the output will also be a linear combination of these signals
after passing through the filter.
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Time-invariance: The characteristics of a filter do not
change over time. That is, the filter’s response is the same
regardless of when the input signal is applied.

Suppose the continuous-time input signal of a filter is x(t).
The output signal y(t) can be represented as

y(t) = x(t) ∗ h(t) + n(t), (1)

where h(t) is the impulse response of the filter and n(t) is
the additive noise introduced by the filter. Here, ∗ denotes the
convolution operation and x(t)∗h(t) =

∫ +∞
−∞ x(τ)h(t− τ)dτ .

Since a filter processes the input signal in the frequency
domain, we are more concerned with its frequency re-
sponse H(f). We can obtain the frequency response by
H(f) = F{h(t)}, where F denotes the Fourier transform
and F{h(t)} =

∫ +∞
−∞ h(t)e−j2πftdt. Then, the spectrum of

y(t) can be obtained by

Y (f) = X(f)H(f) +N(f), (2)

where X(f) and N(f) are the spectrum of x(t) and n(t),
respectively.

Considering the frequency response in the complex fre-
quency domain, we can get the system function H(s), also
known as the transfer function, by setting s = σ + j2πf .
In this case, H(s) =

∫ +∞
−∞ h(t)e−stdt, where L denotes the

Laplace transform. Notice that H(s) contains the pole and
zero information of the system, which can be used for filter
design.

C. System Function in Analog Filter Design

From Section II-B, we can calculate the output of a filter
if we know the input and the system function (or impulse
response or frequency response). Generally, we can determine
H(s) while designing the filter circuit diagram. For example,
we can follow the steps below to design an analog band-pass
filter.

Step 1: Confirm the center frequency f0 and the bandwidth
∆f . The center frequency is usually the same as the carrier
frequency;

Step 2: Select the topology type and order of filters.
Different topology types perform differently in the passband,
stopband, and skirt. For example, a Butterworth filter is
recommended when we need a flat passband response. The
order represents the complexity of the filter circuit, and a
higher order achieves a steep skirt, which means a better
frequency selectivity;

Step 3: Select the parameters of electronic components (like
capacitors and inductors) based on H(s). Notice that when n
is even, a nth-order band-pass filter consists of n/2 2-order
band-pass filters. Thus the overall system function H(s) with
the order n can be represented as

H(s) =


K

n/2∏
k=1

∆ωks
s2+∆ωks+ω2

k
, even n,

K
(n−1)/2∏

k=1

∆ωks
s2+∆ωks+ω2

k
· a1s+a0

s+ωc
, odd n, n ≥ 3.

(3)
K denotes the overall gain coefficient of the nth-order filter.
fk = 2πfk and ∆fk represent the center frequency and

bandwidth of k-th 2nd-order band-pass filter, respectively. In
(3), ωk = 2πfk and ∆ωk = 2π∆fk. An odd-order band-pass
filter has a cascade structure that consists of (n−1)/2 2-order
band-pass filters and a 1st-order low-pass or high-pass filter.
If the 1st-order filter is a low pass filter, a1 = 0 and a0 is a
constant. Otherwise, if it is a high pass filter, a0 = 0 and a1 is
a constant. An odd-order band-pass filter can achieve a wider
passband and a smoother response, while an even-order one
provides a steeper skirt and better frequency selectivity.

Additionally, the design of other kinds of analog filters, such
as a low-pass filter, is similar to the upper process. After we
decide on the filter topology and order, we can obtain the com-
ponent parameters in filter circuits based on the corresponding
H(s) and available parameter tables. Therefore, we can get the
system function H(s) from the filter circuit diagram in reverse
and further analyze the mathematical features of the filter.

III. SIGNAL DISTORTIONS BY ANALOG FILTERS

This section focuses on various types of signal distortions
introduced by analog filters. We first examine amplitude and
phase distortions, which are often inevitable due to non-ideal
frequency responses. Then, we address nonlinear distortions
that can arise under high-level inputs or from parasitic com-
ponents. Finally, we discuss noise-related effects that further
degrade signal quality, emphasizing thermal noise, flicker
noise, electromagnetic interference, and parasitic effects.

A. Amplitude Distortion

When signal components of different frequencies pass
through the filter, they may be attenuated or amplified dif-
ferently. An ideal filter should maintain constant gain in the
passband and achieve complete attenuation in the stopband,
but it is often difficult for actual filters to achieve this.
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(a) Comparison of x(t) and y(t) considering only the amplitude distortion.
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(b) Magnitude response of the filter with H(s).

Fig. 2: Amplitude distortion.
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Amplitude distortion (also called magnitude distortion)
causes some frequency components of the signal to be ampli-
fied or attenuated unevenly, thereby changing the amplitude
spectrum of the signal and causing the waveform to change.
For a filter with frequency response H(f), the amplitude
response is expressed as

|H(f)| =
√
(Re{H(f)})2 + (Im{H(f)})2. (4)

An ideal filter has an invariant |H(f)| over the passband
without amplitude distortion.

Fig.2 shows an example of amplitude distortion caused by
a BPF. In Fig.2(a), the input signal is x(t) = cos 2πf0t +
0.5 cos 2πf1t, where f0 = 1MHz and f1 = 0.8MHz. y(t)
denotes the output signal through an LPF. The system function
of the LPF is H(s) = ωc

s+ωc
where ωc = 3πMHz. The corre-

sponding magnitude response is shown in Fig.2(b). As we can
see, the waveform of the output signal experiences an obvious
amplitude distortion, which may result in demodulation errors.

B. Phase Distortion

Phase distortion arises when the phase response of a filter
is not linear with frequency. This nonlinearity can result in
different frequency components experiencing different time
delays, distorting the signal’s waveform. Filters like Butter-
worth have non-linear phase responses, while Bessel filters
are designed for linear phase to minimize phase distortion.
For a filter with frequency response H(f), the phase response
is expressed as

ϕ(f) = arg[H(f)] = arctan
Im{H(f)}
Re{H(f)}

. (5)

An ideal filter has a phase response of ϕ(f) = −αf + ϕ0

without phase distortion.
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(a) Comparison of x(t) and y(t) considering only the phase distortion.
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(b) Phase response of the filter with H(s).

Fig. 3: Phase distortion.

Fig.3 shows an example of phase distortion. In 3(a), the
input signal and system function are the same as those in
Fig.2(a). Notice that we only show the magnitude distortion
of x(t) in Fig.2(a), we also only show the phase distortion
of x(t) in 3(a). The corresponding phase response is shown
in Fig.3(b). Such distortion will cause a nonlinear phase
delay between different frequency components of the signal,
destroying the relative phase relationship of the frequency
components. This has a great adverse effect on communication
systems that use modulation technology using phase informa-
tion and orthogonal frequency division multiplexing (OFDM)
technology.

C. Non-linear Distortion

Non-linear distortion generates harmonics and intermod-
ulation products, introducing frequencies not present in the
original signal. The possible reasons for non-linear distortion
are as follows:

(1) Exceeding the linear operating range of components
(high-level signals or overload);

(2) Inherent material and structural nonlinearities;
(3) Parasitic parameters and frequency-dependent effects;
(4) Intermodulation due to multiple frequencies.
A passive filter could introduce amplitude distortion and

phase distortion (also called linear distortion), but no non-
linear distortion. However, capacitors and inductors in filters
may cause non-linear distortion with high-level input. Besides,
some components inherently possess nonlinear characteristics
due to their materials under high-voltage or high-frequency
conditions. Parasitic parameters, frequency-dependent effects,
and intermodulation also exist in filter circuits.

In filter design, it is assumed that all components are linear,
and nonlinear distortion is caused by unexpected factors.
Therefore, we cannot establish a mathematical model for non-
linear distortion in advance and often measure such distortion
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(a) Comparison of x(t) and y(t) in time domain.
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(b) Comparison of x(t) and y(t) in frequency domain.

Fig. 4: Nonlinear distortion.
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TABLE I: Noise Types in Analog Filters

Noise Type Origin Model Measurement Method

Thermal Noise Random electron motion Vrms =
√
4kTRB Spectrum analyzer

Flicker Noise Material imperfections S(f) ∝ 1/fα Low-frequency spectrum analysis

Electromagnetic Interference External Electromagnetic fields No universal model Spectrum analyzer, shielding methods

Parasitic Effects Unintended inductance/capacitance Z(f) = 1
j2πfC

+ j2πfL Impedance analyzer

of circuits or components through testing. Common testing
methods include single-tone test, We can judge the severity
of distortion through the main performance indicators of
nonlinear distortion, such as total harmonic distortion (THD)
and third-order intercept point (IP3).

1) Total Harmonic Distortion
THD quantifies the extent of harmonic distortion present in

a signal after it has passed through a system or component,
such as an analog filter or amplifier. It is an indicator of
the linearity of a system. To measure THD, a single-tone
sinusoidal signal is input into the device, and a spectrum
analyzer is used to capture and quantify the amplitudes of
the fundamental and harmonic frequencies. The THD is then
calculated by comparing the sum of the harmonic powers to
the power of the fundamental tone, that is,

THD =

√
V 2
2 + V 2

3 + V 2
4 + . . .

V1
× 100%, (6)

where V1 is the RMS voltage of the fundamental frequency,
and Vn is the RMS voltage of the n-th harmonic frequency.
THD below 3% is often required to ensure signal integrity and
reduce error rates in communication systems, and high THD
values indicate significant distortion, which can degrade signal
quality and impair system performance.

2) Third-order Intercept Point
IP3 is a theoretical point in the input power level where

the power of the third-order intermodulation products equals
the power of the fundamental tones. It serves as a measure of
a system’s linearity and its ability to handle multiple signals
without generating significant intermodulation distortion. IP3
is measured by inputting two closely spaced sinusoidal tones
into the device and using a spectrum analyzer to detect the
resulting intermodulation products. By gradually increasing
the input power and extrapolating the linear trends of the fun-
damental and intermodulation signals, the IP3 is determined as
the hypothetical input power level where the intermodulation
products would equal the fundamental tones. We can calculate
it by

IP3 = Pfund +
PIM3 − Pfund

2
, (7)

where Pfund is the power of the fundamental tones and
PIM3 is the power of third-order intermodulation products.
Depending on the application and frequency band, IP3 values
ranging from +10 dBm to +20 dBm are common in wireless
communication systems, and a higher IP3 indicates better
linearity.

An example of nonlinear distortion is shown in Fig.4. The
input signal is x(t) = sin 2π × 1000t+0.8 sin 2π × 1200t and
the system function of the filter is H(s) = ((1 +

√
2s/ωc +

s2/ω2
c )(1 + s/ωc + s2/ω2

c ))
−1 where ωc = 5πkHz. The

nonlinear distortion is modeled as f(x(t)) = x(t)+0.3(x(t))3.

D. Noise

In electronic filters, various types of noise can significantly
influence the performance of signal processing. These noise
sources arise from the inherent properties of components
and external factors. The origins, mathematical models, and
measurement methods of the major noise sources are briefly
listed in Table I. Generally, we always consider the impact
of thermal noise on signals. The existence and influence of
other noises should be verified by testing. By studying these
noise sources and their impacts, we can better design filters
for specific applications and reduce noise-related performance
degradation.

1) Thermal Noise
Thermal noise, also known as Johnson-Nyquist noise, orig-

inates from the random motion of electrons within a resistive
material. Its power spectral density is uniform across fre-
quencies (white noise), and it is described by the following
equation:

Vrms =
√
4kTRB, (8)

where k is Boltzmann’s constant (1.38× 10−23 J/K), T is the
absolute temperature in Kelvin, R is the resistance in ohms,
and B is the bandwidth in Hz.

Thermal noise can be measured using a spectrum analyzer
by isolating the resistive component and observing the noise
power across a given bandwidth. Careful calibration is essen-
tial to ensure that the measurement excludes external noise
sources.

2) Flicker Noise
Flicker noise, or 1/f noise, arises from material imperfec-

tions and irregularities in the conduction process. Its power
spectral density decreases with frequency and is generally
modeled as:

S(f) ∝ 1

fα
, α ≈ 1, (9)

where f is the frequency and α is a material-dependent
constant. This noise type dominates at low frequencies and
is especially relevant in active components such as transistors.
To measure flicker noise, low-frequency spectrum analysis is
employed, focusing on frequencies where the noise dominates
thermal noise.

3) Electromagnetic Interference
Electromagnetic interference (EMI) is caused by external

electromagnetic fields coupling into the circuit. Unlike other
noise types, EMI does not have a universal mathematical
model due to its dependency on environmental factors and
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coupling mechanisms. Measurement of EMI typically uses a
spectrum analyzer to detect unintended signal peaks within the
operating frequency range. Shielding and proper grounding are
commonly used to mitigate EMI effects.

4) Parasitic Effects
Parasitic noise stems from unintended inductances, capac-

itances, or resistances within the circuit. These effects are
particularly prevalent in high-frequency designs, where com-
ponent and layout parasitics influence the circuit performance.
The impedance of parasitic components is described as:

Z(f) =
1

j2πfC
+ j2πfL, (10)

where C and L represent parasitic capacitance and inductance,
respectively. These parameters can be analyzed using an
impedance analyzer to determine their frequency-dependent
characteristics.

IV. NONLINEAR MODEL OF ANALOG FILTERS WITH
DISTORTIONS

Analog filters, which are often composed of passive compo-
nents such as resistors, inductors, and capacitors, are regarded
as LTI systems under small-signal conditions. For an ideal
linear filter, given an input signal and the impulse response,
the output signal and its spectrum can be calculated by
convolution, as we state in Section II-A.

However, filters may exhibit nonlinear characteristics. For
instance, nonlinearities in capacitors and inductors, saturation
effects, or intermodulation distortions could break the linear
assumption. In such scenarios, the output-input relationship
cannot be described by linear convolution. Thus, circuit mea-
surements and parameter estimation are necessary to charac-
terize the output signals of nonlinear systems. Specifically, by
applying well-defined test signals to the filter and measuring
the output, one can obtain input-output data pairs. The chal-
lenge is then to select an appropriate modeling framework to
represent the nonlinear system.

There are various approaches to modeling nonlinear sys-
tems. There are two basic models named the Hammerstein and
Wiener models [21] [22] [23] [24], both of which decompose
the system into distinct linear and nonlinear components.
Passive analog filters are largely linear under small-signal
conditions. However, non-ideal components in filters can in-
troduce nonlinearities at higher signal levels. Such nonlinear
effects are more naturally captured by the Wiener models. The
model with input signal x(t) and output signal y(t) can be
express by

w(t) = (h ∗ x)(t), (11)

y(t) = f(w(t)). (12)

x(t) is initially shaped by the linear filter and then passed
through a nonlinear mapping f(·).

The linear response h(t) of the filter can be approximately
determined by the system function. Once h(t) is known,
deviations of the measured output from the linear prediction
at larger input amplitudes can be attributed to the nonlinear
function f(·) that follows the linear filter stage. To obtain the
Wiener model, the parameters of f(·) must be determined.

Using the known linear filter h(t), we can compute the
intermediate signal w(t) by (11). This allows us to form data
pairs (w(t), y(t)) by testing, which can be used to fit f(·).
The relation between them can be modeled by a polynomial
regression as

f(w(t)) = a0 + a1w(t) + a2(w(t))
2 + · · · . (13)

The relation can also be modeled by other nonlinear fitting
functions, such as saturation functions or piecewise linear seg-
ments. By minimizing the error between the measured y(t) and
the modeled f(w(t)), we can estimate the parameters of the
nonlinear module. These procedures enable the development
of a more accurate model of analog filters under non-ideal
conditions, enhancing the accuracy of our analysis on signal
processing and reducing demodulation errors.

V. SIMULATION RESULT

In this section, we design an experiment to verify the
effectiveness of the Wiener model in approximating the signal
model of analog filters. A second-order Butterworth BPF is
employed to simulate the linear characteristics of an RF pas-
sive filter. The filter is designed with the following parameters:

• Center Frequency: 1 GHz
• Bandwidth: 100 MHz
• Order: 2

The transfer function H(s) of this BPF can be obtained based
on these parameters and (3). The filter is implemented using
butter function with normalized frequency specifications
to accommodate a sampling rate of 10 GHz in MATLAB
R2021b.

To emulate nonlinear distortions inherent in the BPF, a
quadratic nonlinear term is introduced to the filter’s output.
The nonlinear filter model is defined as yreal(t) = y(t)+n(t)
and y(t) = y(t) + α · (y(t))2 + n(t), where:

• y(t) is the nonlinear output signal,
• H(s) represents the linear BPF transfer function
• x(t) is the input signal
• α = 0.1 is the nonlinear distortion coefficient
• n(t) ∼ N (0, σ2) is the AWGN noise signal and σ = 0.05

To simulate realistic wireless communication scenarios,
Quadrature Amplitude Modulation (QAM) signals are gener-
ated as input. The specifics of the QAM signal generation are
as follows:

• Modulation Order: 64
• Number of Symbols: 1000
• Carrier Frequency: 1 GHz

The symbols are generated using qammod function with
unit average power normalization to ensure consistent signal
amplitude. Each symbol is mapped to a corresponding in-
phase and quadrature component, which are then modulated
onto a 1 GHz carrier using cosine and sine functions, as
x(t) = Re{s(t)} · cos(2πfct) − Im{s(t)} · sin(2πfct), where
s(t) represents the complex QAM symbols.

The Wiener model capturing both the linear and nonlinear
distortions is modeled as ypred(t) = y(t)+p2 (y(t))

2
+p1y(t)+

p0 where p2, p1, and p0 are the polynomial coefficients
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(a) Comparison of x(t) and y(t).
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(b) Comparison of yreal(t) and ypred(t).

Fig. 5: Simulation result.

determined through regression analysis using MATLAB’s
polyfit function.

We perform the experiment as follows:
(1) Randomly select multiple symbol signals from the set

of all available symbols in QAM;
(2) Input these signals into the designed BPF and get the

output signals;
(3) Using the data of output signals to fit the parameters of

the Wiener model;
(4) Randomly select several symbol signals as the input of

the BPF and Wiener model and compare the output signals
yreal(t) and ypred(t);

(5) Evaluate the error of the Wiener model.
By the procedure, we get the fitted model as ypred(t) =

y(t)−0.1553×(y(t))
2
+0.96093×(y(t))+0.0043811. Then,

when a new signal is input, we compare the output signal
of the BPF and the predicted signal of the Wiener model in
Fig.5. From Fig.5-a, we can see that the BPF successfully
filters the noise signal and outputs the QAM signals. From
Fig.5-b, we can see that the output signal predicted by the
fitted Wiener model is very similar to the signal output by the
BPF. The mean square error calculated for the sampling points
in the signal is 0.002455, which is acceptable. However, we
also notice that the parameters of the fitted model are different
from the parameters we set in the simulation. This may be due
to the equivalence between different high-order trigonometric
functions, which makes the performance of the fitted model
and the real model similar even if the parameters are different.
We will discuss this phenomenon further in future research.

VI. CONCLUSION AND FUTURE WORK

It is very challenging to characterize the mathematical
relation between the RFFE circuit and demodulation error
probability in wireless communications. Regarding the whole
circuit as a signal system consisting of multiple components
and submodules, in this paper, we focus on analog filters and
explore their impact on signals in RFFE circuits. We first
introduce the role of analog filters in RFFE circuits and the
system function decided by filter designs. Various potential
distortions caused by the filters are also discussed to illustrate
their impact on signals. Considering the model complexity
and further application in the modeling of the RFFE circuit
signal model, we propose using the Wiener model to build
a mathematical model of analog filters considering nonlin-
ear distortions. Referring to the application of the Wiener
model in characterizing analog filters, we can further analyze
the impact of other crucial components and submodules on
signals in RFFE circuits and finally address the challenging
issue of characterizing the mathematical relation. This relation
potentially reveals novel methods in RFFE circuit design and
communication reliability and security optimization.
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