JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 94

Deep Reinforcement Learning-based Service Function Chains (SFCs)
Deployment

Xiao Kong' and Limei Peng!
ISchool of Computer Science and Engineering, Kyungpook National University,
Daegu, South Korea

Network Function Virtualization (NFV) on top of Mobile Edge Computing (MEC) architecture has gained significant attention
for enabling efficient IoT service provisioning. NFV enhances resource utilization by deploying Virtual Network Functions (VNFs)
on general-purpose servers, which are organized into ordered sequences known as Service Function Chains (SFCs). However,
optimizing VNF placement within SFCs to balance resource utilization and Quality of Service (QoS) remains a major challenge in
MEC environments. Existing SFC deployment methods often face limitations in adaptability and efficiency, as they rely on static or
heuristic approaches that struggle to handle dynamic network conditions and diverse resource requirements effectively. To overcome
these challenges, we propose DeepSFCOpt, a Deep Reinforcement Learning (DRL)-based optimization method for SFC deployment
that integrates Graph Convolutional Networks (GCNs) to extract network features and Sequence-to-Sequence(Seq2Seq) models to
capture the order of SFCs, enabling adaptive placement strategies that optimize resource allocation and maximize long-term average

revenue, thus more effectively meeting the demands of IoT services.

Index Terms—SFC deployment, Virtual function, Deep reinforcement learning, GNN, CARU

I. INTRODUCTION

NFRASTRUCTURE providers (InPs) play a critical role

in managing and optimizing network infrastructures, which
are essential for supporting the diverse traffic types required
by various applications. To efficiently handle these traffic
requests, deploying Service Function Chains (SFCs) using
Mobile Edge Computing (MEC) and Network Function Vir-
tualization (NFV) has emerged as a promising solution [1].
NFV enables the implementation of traditional hardware-based
network functions on general-purpose computing devices in
the form of software. These software-based implementations,
known as Virtual Network Functions (VNFs), include fun-
damental functions such as Firewalls (FW), Deep Packet
Inspection (DPI), Intrusion Detection Systems (IDS), etc. [2].
Traditionally, these network functions are realized through
dedicated hardware appliances, which often incur significant
capital and operational expenses. NFV technology, by lever-
aging software applications running on Commercial Off-The-
Shelf (COTS) servers through Virtual Machines (VMs), offers
a more flexible approach that can adapt to dynamic network
environments and meet the demands of various network ser-
vices.

Additionally, Software-Defined Networking (SDN) technol-
ogy, by decoupling the data plane from the control plane,
provides a flexible network framework and efficient resource
management [3]. This enables IoT services to be managed in
a more centralized and agile manner. In IoT service scenarios,
traffic requests generated by IoT devices typically need to tra-
verse multiple VNF instances sequentially, forming what can
be termed as IoT SFC requests (IoT-SRs) [4].To address the
challenges posed by resource constraints, the SDN controller
must devise an optimal dynamic VNF placement strategy, a
challenge often referred to as the dynamic SFC placement

Manuscript received September 27, 2024; revised November 23, 2024.
Corresponding author: Limei Peng (email: auroraplm@knu.ac.kr).

problem. This involves efficiently embedding ordered SFCs
into physical network nodes within a continuously changing
network environment, ensuring that traffic flows sequentially
through nodes providing the required functions, thereby ef-
fectively integrating the virtual service function chain with
the underlying physical network topology. Unlike the static
nature of the Virtual Network Function Forwarding Graph
(VNF-FG) and Virtual Network Embedding (VNE) problems,
dynamic SFC placement requires adaptive deployment deci-
sions based on real-time changes in network resources and
service demands. Specifically, VNF-FG focuses on arranging
VNF forwarding paths within a fixed topology, while VNE
is concerned with mapping a virtual network onto a physical
network.

In resource-constrained environments, the effective place-
ment of sequential SFC requests within physical networks is
a major challenge faced by InPs. Traditional methods, such
as ILP models and heuristic algorithms [5][6][7], have been
widely used to address SFC deployment problems. For exam-
ple, [8] proposed a pair-based online approximation algorithm
aimed at maximizing a profit function, but this algorithm only
considered two types of VNFs, limiting its applicability in
real-world scenarios. To address this limitation, [5] introduced
a greedy algorithm; however, its computational complexity
increases significantly as network conditions become more
dynamic. Similarly, [6] designed a dynamic programming-
based algorithm with the goal of minimizing resource costs.
Despite these efforts, the effectiveness of traditional optimiza-
tion methods in solving dynamic SFC placement problems
remains challenging. In large-scale networks, ILP methods
often encounter significant computational difficulties. Further-
more, heuristic methods are prone to getting trapped in local
optima when dealing with rapidly changing network dynamics,
limiting their applicability for VNF placement in dynamic IoT
networks.

Recently, with the rise of machine learning techniques,

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 95

especially Deep Reinforcement Learning (DRL), VNF place-
ment problems have been tackled using DRL-based solutions.
For instance, [9] proposed a DRL algorithm to address the
VNFs placement issue, demonstrating better performance than
traditional methods without relying on human expertise or
handcrafted models. The author in [10] proposed a distributed
DRL method to address the challenges of multi-objective opti-
mization in dynamic environments, leveraging deep neural net-
works to approximate the decision-making function. Another
study focused on the reliability of SFC deployment in NFV
environments, introducing a dual-path mechanism where each
SFC has a primary and a backup path, ensuring seamless traffic
rerouting in case of path failures [11].Furthermore, the author
in [12] introduced a two-stage DRL-based SFC deployment al-
gorithm has been developed, combining graph-based resource
aggregation routing with DRL to improve acceptance rates
while meeting latency constraints.Additionally, in a multi-
data center environment, the integration of graph GCN with
DRL has been shown to enhance SFC embedding efficiency
by effectively handling complex network topologies [13].The
author in [14] employed a meta-reinforcement learning (MRL)
approach to facilitate rapid adaptation to varying network
states and optimize SFC deployment strategies. The existing
DRL-based methods have made certain progress in SFC de-
ployment; however, most of these methods face challenges
such as high computational complexity, poor adaptability,
and slow convergence. Additionally, many approaches fail to
adequately address real-time decision-making under complex
network topologies and dynamic changes, leading to limited
efficiency and reliability in large-scale practical environments.

Therefore, in this paper, we propose a DRL-based method
called DeepSFCOpt. This method generates placement strate-
gies by combining a GCN, which extracts physical network
features, with Seq2Seq models, which capture the sequential
information of SFC requests. The aim is to maximize long-
term average revenue and achieve flexible and efficient re-
source allocation to meet the demands of IoT services. Unlike
traditional approaches, it makes SFC placement decisions
based on the performance of past decisions, rather than relying
on assumptions about the environment. The proposed DeepS-
FCOpt deployment method leverages Deep Neural Networks
(DNNs) to explore the non-Euclidean structural characteris-
tics of the physical network and the ordered information of
the SFC requests. Furthermore, we utilize Deep Q-Networks
(DQNs) in the training process of DeepSFCOpt to select
appropriate physical network nodes for SFC deployment.
This approach improves the acceptance ratio and long-term
average revenue while maintaining low running time, thereby
achieving flexible and efficient resource allocation.

The rest of the paper is organized as follows. Secion
II introduces the system model and formulate the problem.
Section III presents the details of DeepSFCOpt Scheme. The
numerical results and discussions are presented in Section IV.
Finally, we conclude our work in Section V.

The main contributions of this paper are synthesized as
follows:

o We formulate a viable NFV/MEC-enabled IoT architec-

ture and propose DeepSFCOpt, a DRL-based framework

for optimizing SFC deployment. This framework inte-
grates GCN and Seq2Seq models to extract the topologi-
cal features of the physical network and the sequential de-
pendencies of SFC requests. Furthermore, it incorporates
an innovative Compositional Attention-based Recurrent
Unit (CARU), which strengthens the model’s capability
to analyze and process complex service chain sequences,
enabling more efficient and effective deployment strate-
gies.

o We incorporate DQNs into the training process of SFC
deployment optimization, leveraging experience replay
and target network techniques to significantly enhance
training stability and convergence efficiency. Experimen-
tal results demonstrate that DeepSFCOpt achieves higher
acceptance rates, long-term revenue, and resource uti-
lization efficiency in dynamic IoT scenarios, showcasing
its practical potential in addressing challenges within
complex and dynamic environments.

¢ Users Layer

“ontroler Layer

(VNF1 P{ VNF2 5 VNF3 +{ VNF4 |

| VNF1 ->/ VNF4 => VNF5 |

Virtualization Layer

| SFC4 | VNF2 - VNF4 > VNF5

: Edge Layer

MEC Node
Load Balancer

IDS

Fig. 1. NFV/MEC-enabled IoT architecture

II. SYSTEM MODEL AND PROBLEM
FORMULATION

Figure 1 illustrates the hierarchical NFV/MEC-enabled IoT
architecture. It shows that IoT service requests from users
are sequentially assigned to the nearest adjacent nodes at the
edge, which then communicate with the SDN controller and
NFV orchestrator in the control layer to embed VNFs into
appropriate nodes to fulfill the service requests.

A. System Model

The considered network can be modeled as a weighted
undirected graph G¥ = (NP, LFP), where G? represents the
graph model of the physical network, encompassing all nodes
and links within the network; NP represents the set of nodes
and LF denotes the set of links in the physical network.
The set of node resources, such as central processing units

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 96

(CPUs), random access memory (RAM),etc., provided by the
physical network is denoted by K. The vectors of remaining
and maximum resources for a physical node n® € NPT are

represented as R;p = R;p)l, e R:Lp’k, e R:LP7|K‘) and
b= U STERRS RZ%,,k, NN RZ},,‘Kl , respectively. Here,
Ry, k and BT} , denote the remaining and maximum amounts

of resource k € K provided by node nf. Link-oriented
attributes may include bandwidth, latency, packet loss, etc.
For simplicity, this paper considers bandwidth and latency as
the primary link-oriented attributes.

B. SFC Request

Each SFC request ¢ can be modeled as a weighted directed
graph G = (N', L), where G' represents the graph model of
SFC request i, including all VNFs and virtual links related to
the request. This graph is used to describe the sequence and
dependencies among the functions in the SFC; N' denotes
the set of VNFs in SFC request i, containing all the required
functions for the request and L' refers to the set of virtual
links in SFC request i, which includes the connections between
the VNFs. We denote the vector of requested resources for
VNF n' € N? as 7" = [r}',...,17} ,...,’/"K‘] where rk
is the amount of resource & € K requested by VNF n’.
Additionally, the latency requirement for SFC ¢ is denoted
as Q. The remaining and maximum bandwidth of a physical
link (¥ € L” are represented as B, and Bj}, respectively.

C. Promblem Formulation

Figure.2 provides an example of SFC deployment, illustrat-
ing how an arriving SFC G' is mapped to the physical network
G? under resource constraints.

According to the aforementioned network model, each VNF
utilizes the resources allocated by the node to process the
forwarded packets. For an IoT service with a packet size of
d;, the processing delay of a VNF at the node is expressed

as: 0
alr(t)

K3

V(nig)(t) = (1)
where o' (t) represents the portion of resources allocated to
VNF n; at time ¢. By dividing o (¢) into three parts, the above
equation can be rewritten as:

8

J
jgn T i

d] s d;)
Y(nij)(t) = x5 o + 27, R @)

’L
Here, dj denotes the size of the data packet in terms of
CPU, d; represents the size of the data packet in terms of
storage, and d; indicates the size of the data packet in terms
of transmission. ¢}, s, and w;" refer to the CPU, storage, and
transmission resources allocated to VNF node n;, respectively.
l’z o a:;?f’], and z¥’ ; are binary variables. When they take the
value of 1, it means that the request requires the relevant
resources; when they take the value of 0, it means that the

request does not need that type of resource.

The transmission delay between two VNF at nodes n; and
n; is expressed as:
d;
- TTL»;,’IL]' m
where [(I;) is the capacity of the virtual link /;, which can be
expressed as:

Vrnson; (1) 3)

P, |g(ni, n])'

92 + anef nE#EN; nk |g(nk7 n])|2

“)
In this equation, B is the bandwidth, P, is the transmission
power of node n;, 62 is the noise variance and g(n;, nj) is the
channel gain between the two edge nodes,reflecting the attenu-
ation effect of distance on the channel. As the distance between
nodes increases, the channel gain g(n;, nj) decreases,resulting
in a reduction in link capacity [(l;), which in turn leads to an
increase in transmission delay. Consequently, the end-to-end
delay for the service requested by terminal j primarily includes
the processing delay at the nodes, the transmission delay,
and the queuing delay v, (M/M/1 queue model) expressed

as follows:
Qi(t)= > Al + Y A
l,eL;

n; EN;

I(l;) = Blog, (

y(ni)(

+ Yq @)

To ensure that the end-to-end delay does not exceed the
maximum threshold @Qpn.x, the following constraint must be
satisfied:

Qj(t) S Qmax (6)

In this paper, we assume that the InP charges for SFC using
the widely adopted pay-as-you-go” pricing model commonly
seen in cloud platforms. The revenue obtained from each SFC
request ¢ is defined as:

(i) = oy Zmem Trik + 5 ZlieLi bi,, 1if 4 is accepted
revie 0, otherwise

)
where ¢, is the unit price of resource k in physical nodes,
and (3 is the unit price of bandwidth. We use R(m) to denote
the long-term average revenue, which is defined as:

R(m) = lim %Zrev(i) (8)
el

where I, = {i | 0 < t; < 7} represents the set of SFC that
arrive before time 7. Considering the variability of the channel
gain over time, our objective is to determine an optimal policy
m* that maximizes the long-term average revenue:

7 = argmax R(m))

Satisfy the other constraints:

> etirn k<R (10)
n; EN;
> b < B (1

lieL;

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 97

Service Function Chain Request

VNF1 VNEF2 VNF3

[uHu Hn

(Ba md\\ltll l nit price)

VNF4

%I

(304)

(60,3)

(80.5) 1(60,2)7 Host 5(3)

(40, 2)

(10,2)

Host 2 (6)

) Host 4 (2)
(Resource Umt Price)

Host 6 (6)

Physical Network

O CPU Resoure ——> Bandwith Requirement

Node Mapping

O Storage Resoure ——— Bandwith Resoure

Link Mapping

Fig. 2. An example of SFC placement

dYoovi— > i =en—en (12
lpel(ny) l,€0(np)
Y e =1 (13)
npENp
> e, =1 (14)
lpeli

Constraint (10) ensures that the total demand for resource K
by all virtual network functions n; mapped to a physical node
does not exceed the remaining resources of the physical node.
Constraint (11) ensures that the total bandwidth demand of all
virtual links /; mapped to a physical link does not exceed the
remaining bandwidth of that link. Constraint (12) stipulates
that if a SFC request is accepted, the path mapped in the
physical network must traverse the VNF in the specified order
as defined in the request. Constraint (13) requires that each
virtual network function n; must be mapped to exactly one
physical node n,. Constraint (14) requires that each virtual
link /; must be mapped to exactly one physical link I,,.

III. THE PROPOSED DEEPSFCOPT SCHEME
A. Model Architecture

The model architecture of DeepSFCOpt, illustrated in Fig.3,
consists of three components: (i) a GCN for extracting physical
network features, (ii) a Seq2Seq model capable of capturing
the sequential information of SFC requests, (iii) and a module
for generating placement strategies. We will explain each
component in detail.

1) GCN for Network Features: We utilize a semi-
supervised GCN to extract features from physical net-
works in order to explore their topological structures.
GCNs are particularly well-suited for analyzing com-
plex network topologies as they efficiently handle non-
Euclidean data and capture both local and global net-
work features by aggregating information from neigh-
boring nodes.At each time step ¢, the current state of the

2)

3)

physical network st = (Z,Y) is fed into a GCN layer
to learn a new representation matrix Z; € RINPIXUsn
where Uy, is the number of units in the GCN layer. The
mathematical operation of the GCN is briefly formalized
as follows:

Zy = GCN(s?) = o(D™Y2AD™ Y2y W) (15)

Here, o is the activation function, and W represents the
trainable parameters. The term D~ /2AD~1/2 serves
as the approximated graph convolution filter, analogous
to the filters used in Convolutional Neural Networks
(CNNs).

Seq2Seq model for SFCs: This paper utilizes the capa-
bilities of the Seq2Seq model for efficient sequence map-
ping by employing an encoder based on a Compositional
Attention-based Recurrent Unit (CARU) network [15].
This design effectively captures the sequential informa-
tion inherent in SFC requests. The CARU processes an
input sequence s, = (sl,...,sl) to produce hidden
states e;. At each time step ¢, the CARU unit takes
the current input s’ along with the hidden state from
the preceding time step e;—; as inputs, generating the
hidden state e; for the current time step. The CARU

operation is defined as follows:
= CARU(sL, e;_1). (16)

The following equations represent the operations within
CARU, where [W; B| denotes the training parameters,
including weights and biases, which form the linear
layers. We set ¢ = 0 as the initial state. At the initial
state, CARU directly returns:

eV =Ww,,v® 4+ B,, (17)

For ¢t > 0, the complete recursion loop for CARU is as
follows:

x(t_l) = anv(t_l) + an

n(t_l) = (b (Whne(t_l) + Bhn + aj(t_l))

Z(t_l) =0 (the(t_l) + th + szv(t_l) + sz)

(18)
(19)

(20)
1070 o (at7D) @ 207D @1
et — (1— l(tfl)) ® et 4 1(t=1) o pt=1) (22)

where © denotes the Hadamard product, o and ¢ are
the activation functions, specifically the sigmoid and
hyperbolic tangent functions, respectively.

Placement Strategy Generation: The Seq2Seq model’s
decoder is initialized with the encoder’s final state, e.
At each time step ¢, the decoder leverages the current
state dy, the context vector ¢; [16], and the output
from the GCN layer Z; to generate an action sequence
a = (ai,...,ar). To derive the probability distribution
over potential actions, these components—d;, ¢;, and
Z, are concatenated and processed through a fully con-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4,

B.

In

Physical Network

GeN _(“Action
4 Generation
Sp Z,
Alignment Vector Context Vector
aa—— 3%
e/ ey, dile . |d, dr

) e
CARU — CARU — CARU T CARU —> CARU — CARU

! 1 [[I

r T T a;_ ar_
sy st s t-1 T-1

Fig. 3. The network architecture of DeepSFCOpt

nected layer. A softmax function is subsequently applied
to align the output size with the number of available
physical network nodes. The conditional probability for
each action is calculated as follows:

7l | {a1,-..,ai_1},ds, ct, Zy] = softmax(d.), (23)

where

dl = v tanh(Wy[dy; ci; Z4)). 24)

Based on this conditional probability, the agent selects
the action a;, determining the physical node for the
placement of the current VNF.

We utilize the Dijkstra algorithm to determine the
shortest path between nodes a; and a;—; within the
physical network. If this path satisfies the bandwidth and
latency requirements, the VNF is successfully deployed
at a;. Otherwise, the placement attempt fails, and the
previously allocated physical resources are released.

Preliminary Work

dynamic and complex environments, this study’s SFC

deployment scheme aims to determine sequential strategies

that
the

satisfy Markov properties. Based on the DRL framework,
interaction between the agent and the environment is

defined as a finite-horizon Markov Decision Process (MDP).
For each SFC request, we model the deployment problem as
an MDP, with the basic elements including state .S, action A,

and

1y

2)

reward R.

State: The state should include two parts: the current
physical network characteristics and the SFC request
characteristics. Therefore, we define the state as s; =
(s¥,sh). Here, s = (Z,Y) represents the current state
of the physical network, where Z € RIN?IXINel js the
adjacency matrix of the network, and Y € RINPIXM jg
the feature matrix of the physical nodes. Each row of Y’
is an M -dimensional feature vector of the physical node
ny. s, represents the current state of the SFC request,
including the resource requirements of each VNF in the
SFC chain, the required link bandwidth, and the end-to-
end delay threshold Qax-

Action: Selecting nodes from physical nodes with avail-
able resources exceeding the VNF requirements for
SFC deployment. The action set is defined as: A; =
(7} U{ny € Np | 1y < R, 4, Vk € K.

ISSUE 2, NOVEMBER 2024 98

Algorithm 1 DeepSFCOpt Algorithm

H
1:

(98]

Nk

o ®

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:

37:
38:

Input: Physical network Gp, SFC requests {G,},
episodes F, learning rate «, discount factor ~

: Output: Optimal SFC placement policy 7*
. Initialize experience replay buffer D, target network pa-

rameters 0, Ourger < 0

: for each episode e =1 to E do

Reset environment and initialize state s
for each SFC request G; € {G;} do
Observe current physical network state s and SFC
request sj
Combine s? and s as current state s,
Zt < GCN(S?)
for each VNF in GG; do
et < CARU(s], er—1)
end for
for each VNF n; in SFC G; do
a; < Select physical node n, using e-greedy
policy based on state s;
if n, satisfies resource and bandwidth con-
straints then
Deploy VNF n; on node n,
else
Reject placement and rollback resources
end if
Store transition (s¢, as, ¢, S¢+1) in buffer D
end for
if G; is successfully deployed then
r; < Calculate reward based on resource
utilization and revenue
else
ry < Negative reward
end if
Update state to s, after SFC deployment
end for
Sample mini-batch of experiences from D
for each (s, a¢, 74, S¢41) in mini-batch do
Qta.rget — 71+ v maX(Q(StJrh Q415 gtargel))
Update @-network parameters 6 using gradient
descent on loss: (Q(st, at;0) — Quarger)?
end for
if step % update_freq == 0 then
Update target network: Orge; < ¢
end if
end for
return Optimal policy 7*

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 99

TABLE 1. Simulation Parameters

Name Value | Description
L 0.001 The unit price of resource k
w 0.001 The unit price of bandwidth
€ 0.1 The initial exploration rate (epsilon-greedy policy)
€min 0.001 The minimum exploration rate
€decay 0.995 The decay rate of exploration rate per episode
Q 0.00025 | The learning rate of Q-network
ol 0.95 The discount factor of TD error
6 0.125 The reward coefficient
B 64 The batch size
| D| 10000 | Size of the experience replay buffer
Usens Uemd, Uene, Udec 64 The units number of GCN layer, embedding layer, encoder hidden states, and decoder
hidden states
Oupdate_treq 1000 The frequency of updating target network parameters

3) Reward: The reward signal is designed to encourage the
agent to deploy SFC with the aim of maximizing long-
term average revenue. To this end, when the SFC request
1 is accepted at time step ¢ = 7T, the agent receives a
reward r; = rev;, where

rev; = o Z Tni,k"i’ﬂ Z bli,

n;EN; l;€L;

(25)

During the intermediate steps (¢ < T'), if all resource con-
straints, including bandwidth and latency, are satisfied, the
agent receives a small reward given by r; = £rev;. Otherwise,
the reward is r; = —&rev;, where ¢ is the reward coefficient.

The complete execution process of our DeepSFCOpt ap-
proach is shown in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Experimental Setup

During the experiment, we randomly generated a physical
network consisting of 200 nodes and 500 links to simulate
a medium-sized InP. The system sequentially receives 2,500
SFC requests, with an average arrival rate of 30 requests
within 100 time units. Each SFC request contained between
2 to 10 VNFs, following a uniform distribution.During the
training phase, the DQN algorithm is employed[17]. The agent
stores interactions with the environment using an experience
replay mechanism and utilizes a target network to stabilize
the training process. Parameters of the Q-network are updated
through mini-batch training using samples from the experience
replay buffer. In the testing phase, only the trained Q-network
is used to handle the SFC requests. A greedy strategy is
adopted for action selection to ensure the utilization of the
optimal strategy learned during training.More parameters can
be found in TABLE L.

B. Evaluation and Analysis

To evaluate the effectiveness of the proposed DeepSFCOpt
approach, we compare it with the two following approaches:

e« DRL-A3C : An asynchronous actor-critic algorithm
where multiple agents learn in parallel, updating a shared
model for improved decision-making.

o TD (Temporal Difference Learning) : A RL method
that updates value estimates using the difference between
predicted and received rewards.

e SFC3D : A dynamic SFC placement algorithm in dis-
tributed data center networks based on DRL,which was
proposed in [18].

Figure.4 shows the acceptance ratios of three algorithms
during the testing phase for SFC requests. We observe that
initially, the acceptance ratios of all three algorithms demon-
strate a declining trend, as the resources of the physical
network, including link bandwidth, are gradually consumed by
incoming SFC requests.In the latter half of the testing phase,
DeepSFCOpt achieves the highest acceptance rate, reaching
76.8%. Compared to DRL-A3C and TD, DeepSFCOpt’s per-
formance is improved by 2.9% and 9.3%, respectively.

1.00
—eo— DeepSFCOpt
0.95 TD(Temporal Difference Learning)
—4+— DRL-A3C
0.90 —+*— SFC3D
o
=
© o085
(V]
v}
< 0.80
©
i
o oo
3o > o - +
[v}
<<
0.70
0.65
0.60

0 560 1000 1sbo 20‘00 2500
Number of SFC requests

Fig. 4. Acceptance ratio over different SFC requests.

In Figure.5, we compare the average revenue of all three
algorithms as they sequentially process SFC requests. After
processing 2,500 SFC requests, DeepSFCOpt achieves the
highest long-term average revenue of 0.068, which is an
improvement of 4.6% over DRL-A3C, 11.4% over TD, and
1.5% over SFC3D. This indicates that our algorithm can

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024 100

intelligently make SFC placement decisions, benefiting from
the effective utilization of physical network characteristics and
SFC request features.

0.10

—eo— DeepSFCOpt
TD(Temporal Difference Learning)
0.09 —+— DRL-A3C
—~— SFC3D
()
=]
g
L o.08
(]
s
()
o
© 0.07
g
<
0.06
0.055 500 1000 1500 2000 2500

Number of SFC requests

Fig. 5. Average revenue over different SFC requests.

Figures. 6 and 7 illustrate the acceptance ratios and long-
term average revenue under different arrival rates. To simulate
the demand variance of SFC requests between busy and idle
hours, we increase the arrival rate from an average of 12
requests per 100 time units to 30 requests, with an increment
of 3 requests per step. The results indicate that as the arrival
rate increases, the acceptance ratio decreases while the long-
term average revenue increases. Additionally, DeepSFCOpt
outperforms DRL-A3C,TD and SFC3D in both acceptance
ratio and revenue.

1.0

—eo— DeepSFCOpt
TD(Temporal Difference Learning)
0.9 —+— DRL-A3C
—*— SFC3D
o
=
©
=08
()]
v}
c
©
a
o007
v}
v}
<
0.6
D'512 1.5 2‘7 30

18 21 24
Arrival rate (within 100 time units)

Fig. 6. Acceptance ratio over different arrival rates.

V. CONCLUSION

This study investigates how to efficiently deploy SFC onto
physical networks to maximize the long-term average revenue
of InP. Specifically, we propose a DeepSFCOpt algorithm that
combines GCN and Seq2Seq models to extract features from
the physical network and SFC requests, while utilizing the
DQN algorithm to accelerate the training process and intelli-
gently generate SFC placement strategies. Numerical results
demonstrate the superiority and effectiveness of this method.
In the future, we plan to further investigate the deployment and
resource coordination of SFCs within multi-domain network

0.075
—e— DeepSFCOpt
TD(Temporal Difference Learning)
0.070 —— DRL-A3C
—~— SFC3D
(]
>
@
Q o.065
o
[0}
o)
© 0.060
2
<<
0.055
0.0505 15 18 21 24 27 30

Arrival rate (within 100 time units)

Fig. 7. Average revenue over different arrival rates.

environments to address the limitations of current single-
domain deployment assumptions.In multi-domain networks,
such as those spanning heterogeneous networks or networks
managed by different operators, SFC deployment should not
only resolve inconsistencies in network protocols across do-
mains but also address the challenges of inter-domain trust and
collaboration.Federated Learning (FL) or distributed optimiza-
tion methods offer potential solutions for achieving efficient
cross-domain collaboration while ensuring data privacy.

VI. ACKNOWLEDGEMENT

This research was partially supported by the Brain Pool
Program funded by the Ministry of Science and ICT through
the National Research Foundation of Korea (NRF) (Grant
No. NRF-2022H1D3A2A01063679), the NRF grant funded
by the Korean government (MSIT) (Grant No. RS-2024-
00457947), and the 2024 Kyungpook National University
BK21 FOUR Graduate Innovation Project (International Joint
Research Project for Graduate Students).

REFERENCES

[1] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane, “Service
function chaining in mec: A mean-field game and reinforcement learning
approach,” IEEE Systems Journal, vol. 16, no. 4, pp. 5357-5368, 2022.

[2] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource allo-
cation: A systematic review and taxonomy of vnf forwarding graph
embedding,” Computer Networks, vol. 185, p. 107726, 2021.

[3] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in sdn: A
comprehensive survey,” Journal of Network and Computer Applications,
vol. 159, p. 102595, 2020.

[4] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Dynamic service function
chain embedding for nfv-enabled iot: A deep reinforcement learning
approach,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 507-519, 2019.

[5] B. Yuan and B. Ren, “Embedding the minimum cost sfc with end-to-end
delay constraint,” in 2020 5th International Conference on Mechanical,
Control and Computer Engineering (ICMCCE). 1EEE, 2020, pp. 2299—
2303.

[6] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopou-
los, and C. Verikoukis, “Online vnf lifecycle management in an mec-
enabled 5g iot architecture,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4183-4194, 2019.

[7]1 P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware vnf chain
deployment with efficient resource reuse at network edge,” in IEEE
INFOCOM 2020-IEEE conference on computer communications. 1EEE,
2020, pp. 267-276.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, NOVEMBER 2024

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

O. Alhussein and W. Zhuang, “Robust online composition, routing and
nf placement for nfv-enabled services,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 6, pp. 1089-1101, 2020.

J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 263-278, 2019.
H. Xing, Y. Pu, X. Wang, F. Song, Z. Xiao, L. Feng, and L. Xu,
“Big data oriented multi-objective sfc placement in dynamic mec: A
distributed drl approach,” in ICC 2024 - IEEE International Conference
on Communications, 2024, pp. 666—671.

Y. Zhong, D. Zheng, and X. Cao, “A drl approach with network service
deployment transformer for reliable sfc deployment,” in ICC 2024 -
IEEE International Conference on Communications, 2024, pp. 177-182.
A. Tian, B. Feng, Y. Huang, H. Zhou, S. Yu, and H. Zhang, “Drl-based
two-stage sfc deployment approach under latency constraints,” in /EEE
INFOCOM 2024 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2024, pp. 1-6.

D. Xiao, J. A. Zhang, X. Liu, Y. Qu, W. Ni, and R. P. Liu, “A two-stage
gen-based deep reinforcement learning framework for sfc embedding in
multi-datacenter networks,” IEEE Transactions on Network and Service
Management, vol. 20, no. 4, pp. 42974312, 2023.

S. Guo, Y. Du, and L. Liu, “A meta reinforcement learning approach for
sfc placement in dynamic iot-mec networks,” Applied Sciences, vol. 13,
no. 17, p. 9960, 2023.

D. Hu, S. Lyu, S. Y. Chang, L. Peng, and P-H. Ho, “Dynamic
siot network status prediction,” Journal of Networking and Network
Applications, vol. 2, no. 2, pp. 78-85, 2022.

D. Bahdanau, “Neural machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473, 2014.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

J. Jia and J. Hua, “Dynamic sfc placement with parallelized vnfs in data
center networks: A drl-based approach,” ICT Express, vol. 10, no. 1, pp.
104-110, 2024.

101

