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Chen Zhang', Tielin Huang!, Wenjie Mao', Hang Bai!, and Bin Yu!
1School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, China

Federated learning, hailed as a transformative approach, fosters collaborative and secure acquisition of a unified model within the
domain of Industrial Internet of Things (IIoT). This innovative paradigm enables multiple clients to collectively contribute to model
training while preserving data privacy, leveraging the coordination of a central server. In the real world, most smart edge devices of
the IIoT are always confronted with considerable data in the form of sequential data streams. However, current federated learning
models suffer a sharp drop in performance when dealing with sequential data, which is called catastrophic forgetting. Consequently,
A crucial obstacle encountered in practical implementations of federated learning revolves around the need to address the issue of
catastrophic forgetting, thus enabling it to acquire and retain knowledge across multiple tasks, akin to human capabilities. In this
paper, we propose a novel framework, called Federated Central Memory Rehearsal (FedCMR), which is inspired by the rehearsal
method of continual learning. Specifically, the Generator model, trained by the central server, is tasked with the responsibility of
creating the pseudo data (Central Memory) associated with previous tasks. The pseudo data refers to synthetic data generated by
the model, which serves to mimic the data from older tasks. This synthetic data is crucial for rehearsal-based learning, allowing
local models to retain knowledge from earlier tasks even when only the current task’s data is available for training. Upon the
arrival of a new task, the local client mixes a small amount of pseudo data with the local dataset for training, with the aim of
maintaining the knowledge of old tasks (Rehearsal). Upon the completion of training for the current task by each local client, they
proceed to upload their respective local models and the sampled data from the current task, fortified with differential privacy noise,
to the central server. Subsequently, the server consolidates the collected local models, crafting a novel global model. Additionally,
it generates a limited amount of synthetic data representing past tasks, which is then disseminated to each client for secure and
collaborative training purposes. Experimental results demonstrate that FedCMR overcomes catastrophic forgetting while realizing
privacy preserving and reducing communication costs.

Index Terms—Federated Learning, Privacy Preserving, Sensitive and Private Information.

I. INTRODUCTION updated local weight w; ; back to the server. Lastly, the server
aggregates the weights uploaded by the selected clients using
weighted averaging, resulting in the updated global weight
wgil. This updated global weight serves as the initial weight
for the subsequent round of training, and the process continues
iteratively until convergence is achieved.

Federated learning has found widespread use in various
domains such as smart cities[4], healthcare[5], and open
banking[6]. It allows for secure and privacy-preserving col-
laborative model training across multiple remote institutions
while complying with privacy protection regulations like
GDPR[7]. However, when dealing with sequential arrival data
in practical applications of federated learning, the challenge of
catastrophic forgetting always persists. For example, there are
multiple hospitals (clients) distributed in different geographic
regions currently participating in the federated training of the
Cerebral Infarction diagnosis model as shown in Figure 1.
When the epidemic COVID-19 [8] needs to be diagnosed in
these hospitals, each hospital has to feed the local image data
(chest X-ray, CT, MRI) of COVID-19 to the federated model.
Unfortunately, traditional federated learning is going to drift to
the diagnosis of COVID-19, which means that the diagnostic
knowledge of Cerebral Infarction in each hospital is forgotten.
Therefore, federated continual learning is needed to solve the
above problems in similar scenarios.

Recently, continual learning (CL) has garnered significant
attention in the realm of learning from infinite data streams.
This approach deviates from the traditional assumption of

HE concept of Federated Learning (FL) emerges as

an innovative machine learning paradigm that combines
privacy preservation and collaborative distributed learning,
effectively addressing the challenges of data isolation. In 2016,
Google introduced Federated Learning as an approach initially
applied to tackle the task of next-word prediction on Android
mobile keyboards within a distributed environment[1]. This
revolutionary framework characterizes a distinctive scenario
of distributed machine learning, wherein multiple local clients
actively participate in the training process of a shared model,
with the guidance of a central server. The local client can
be a device with limited local resources such as a mobile
phone, a personal computer, or an Internet of Things (IoT)
device [2]. However, local data available to individual clients is
often insufficient for comprehensive training of deep learning
models. To address this, FL. aggregates locally trained models
into a new global model on the server, which requires effective
and efficient aggregation algorithms.

Several aggregation algorithms have been proposed to en-
able the central server to combine local models effectively,
with the Federated Averaging (FedAVG) algorithm[3] being
one of the most prominent. The FedAVG algorithm revolves
around the following core principle: Initially, the server ini-
tializes the global model weight wig) and transmits it to a
randomly selected set of clients, denoted as S;. Subsequently,
these selected clients independently perform local updates on

their initial local weights w; in parallel. They then transmit the

Manuscript received September 17, 2024; revised October 28, 2024. Cor-
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having complete data readily available [9].Continual learn-
ing can continually accumulate the knowledge of sequential
tasks, which can be applied to the future task to overcome
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Fig. 1. Multiple hospitals participate in the federated training of the sequential
disease diagnosis model. As a local client, each hospital uploads the local
model weights w¢ 1 to the central server for global aggregation. Additionally,
each hospital trains multiple tasks in a sequential manner. However, the
knowledge of the newly arrived task (COVID-19) overwrites the knowledge
of the old task (Cerebral infarction), which is called catastrophic forgetting.

catastrophic forgetting [10]. There are three main categories of
methods used in continual learning: regularization-based meth-
ods, dynamic structure-based methods, and episodic memory-
based methods.

However, the issue of catastrophic forgetting in the fed-
erated learning setting has rarely been discussed. The naive
solution to this problem is to apply the above continual
learning methods directly on the local clients to solve local
catastrophic forgetting. Nevertheless, this naive method is
bound to increase the computational burden on the local
devices and reduce the training accuracy. Existing research
[11] [12] on federated continual learning ignores the recov-
ery of old task knowledge, which inevitably leads to the
degradation of model performance on old tasks. Due to the
uniqueness of its own architecture and training methods,
federated learning has a large number of privacy leakage risks,
such as Membership Inference Attack [13]. Consequently,
we analyze several challenges for achieving anti-forgetting
federated learning: 1) Restoring old task knowledge efficiently:
When the local model of clients in federated learning learns
a new task in a sequential dataset, its performance on old
tasks often experiences a significant decline, a phenomenon
commonly referred to as catastrophic forgetting. In order to
restore the capability of a federated model to learn previous
tasks, clients often need to retrain the model, which is the
biggest challenge in achieving federated continual learning. 2)
Lossless knowledge transfer is a crucial aspect that deserves
attention in research. While some existing studies emphasize
the isolation of model parameters, it is essential to recognize
that placing excessive computation burdens on clients can have
detrimental effects on model performance. Therefore, it is
indispensable to ensure that the knowledge of old tasks of the
model is preserved without affecting the training efficiency
of the local clients. 3) Privacy concern: Federated learning
strives to bridge data silos while ensuring privacy preservation.
Safeguarding the data privacy of participants is a fundamental
prerequisite for enticing clients to engage in the training
process. Therefore, the federated continual learning approach

that can be implemented in practice must possess the ability
to guarantee the privacy of individual client data.

To provide promising solutions to learn networks without
catastrophic forgetting through leveraging federated commu-
nication mechanisms, we propose a novel framework named
Federated Central Memory Rehearsal (FedCMR) to address
the above challenges, which utilizes Generative Adversarial
Networks (GANs) [14] on the server side for episodic memory
generation. Specifically, in this framework, the central server
trains a Generator model to create pseudo data (Central Mem-
ory) for old tasks. When a new task arrives, local clients use
some of this pseudo data in combination with their own data
for training. This helps them retain knowledge from earlier
tasks (Rehearsal). Subsequent to the training of the current
task on local clients, each client uploads their local model and
the sampled data from the current task, with the inclusion of
differential privacy noise, to the central server. The server then
aggregates the collected local models to form a fresh global
model and generates a limited amount of synthetic data for
previous tasks using the Generator. These aggregated global
model and pseudo data for old tasks are then distributed syn-
chronously to each client for secure and interactive training.
Finally, the effectiveness of the proposed method is evaluated
using sequential datasets. The main contributions of this paper
are summarized as follows:

1) We presents a new FedCMR framework to effectively
address the challenges faced by anti-forgetting federated
learning: restoring old task knowledge, knowledge trans-
ferring and privacy concerns.

2) In the FedCMR, the generative model Memory Gen-
erator trained on the server side is for the purpose of
generating episodic memory pseudo data, which restores
the old task knowledge and reduces the computational
burden of resource-constrained clients.

3) We assess the effectiveness of our approach using
three distinct datasets: perm-mnist, five-mnist, and svhn-
mnist. Extensive experiments reveal that compared with
baselines, FedCMR overcomes catastrophic forgetting
efficiently while providing privacy preserving.

The subsequent sections of this paper are structured as
follows. Section II provides a brief review of the existing
literature on federated learning and continual learning. Section
IIT overviews the proposed FedCMR framework and provides
the basic process in the framework. Section IV details the
implementation of the FedCMR algorithm. Next, we conduct
several experiments on sequential datasets to evaluate our
framework in Section V. Finally, Section VI concludes the
main efforts of this paper.

II. RELATED WORKS

In this section, we present the basic concepts of federated
learning and continuous learning and discuss some of the
related works.

A. Federated Learning

Recently, the researches on federated learning have greatly
proliferated [15]. Federated learning, as introduced earlier,
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facilitates collaborative training of a shared model among
distributed users while ensuring the privacy of local user data
is preserved. Federated Averaging (FedAVG) is proposed in[3]
which uses a synchronized global aggregation. Building upon
the FedAVG framework, Li et al. [16] introduced a framework
called FedProx. FedProx incorporates a correction term known
as the proximal term into the objective function of local
clients. Additionally, it dynamically adjusts the number of
local iteration epochs, enhancing the overall performance of
the federated learning process. Li et al. [17] discussed the
existing challenges and solutions of federated learning, and
summarizes possible directions for future work. In [18], a
recommendation system for charging stations in the Electric
Vehicles (EVs) industry is introduced, which utilizes the
Vertical Federated Learning technique. The system is designed
to operate on secure cloudlets. Cheng et al. [19] developed
a privacy-preserving approach for detecting icing on wind
turbine blades using heterogeneous federated learning, with
a focus on data sharing among multiple wind farms. In [20], a
new federated learning framework called PCFed is introduced,
which ensures strong privacy guarantees and improves com-
munication efficiency while achieving higher model accuracy.

With the rapid growth of big data, federated learning faces
a new challenge in handling multiple tasks. However, it is
often the case that the training data for all tasks is not readily
accessible. Consequently, federated learning models must be
trained on sequentially arriving data streams, posing a distinct
challenge. Therefore, neural networks are expected to be able
to continuously learn new knowledge with newly arrived
data while not forgetting the previously learned knowledge.
However, traditional deep neural networks suffer from design
flaws that lead to the iterative overwriting of parameters in
each layer during the training process [21]. As a consequence,
the existing knowledge is overshadowed by the newly acquired
task knowledge, resulting in what is commonly referred to
as catastrophic forgetting. A naive solution is to retrain the
model on the local old task data to regain the lost knowl-
edge. But this method not only greatly reduces the training
efficiency, but also wastes the limited resources of the client
in the federated environment. Therefore, our objective is to
develop an anti-forgetting framework tailored to the distinctive
features of federated learning, with the aim of overcoming the
aforementioned challenges.

B. Continual Learning

In the age of big data and deep learning, we face a situation
where our model trains ever more tasks on their own datasets
in a sequential manner, which differs from the traditional
assumption that complete data are accessible [10]. Therefore,
continual learning (CL) is designed to learn from an infinite
data stream, which aims to gradually expand the knowledge
base without forgetting previous knowledge [22]. Continual
learning, also referred to as lifelong learning or incremental
learning, involves the introduction of new tasks. However, a
notable challenge in this process is the substantial performance
decline of existing neural network models on previously
learned tasks, which is commonly known as catastrophic

forgetting. The occurrence of catastrophic forgetting in neural
networks can be attributed to the stability-plasticity dilemma, a
challenge that neural networks face. In this dilemma, stability
refers to the ability of neurons to retain prior knowledge, while
plasticity refers to the capacity to incorporate new knowledge
[23]. A host of recent efforts have addressed the catastrophic
forgetting of continual learning with task sequences. Li et al.
[24] proposed a novel approach for continuous learning in
classification. Their method focuses on enhancing the real-
time classification performance by continuously incorporating
newly labeled data into the learning process. Ren et al. [25]
proposed a method that combines Extreme Learning Machine
(ELM) with global Bayesian and continuous learning tech-
niques. This approach enables the direct acquisition of new
knowledge from additional data, allowing for the updating
of model parameters without the need to retrain the entire
model from scratch. Hanul et al. [26] proposed a novel Deep
Generative Replay (DGR) with a dual-model architecture,
which alleviates forgetting with generated data from previous
tasks. Elastic Weight Consolidation (EWC) [27] is for the
purpose of restricting changes of crucial model parameters
through Fisher Information Matrix in the training process
of later tasks. Li et al. [28] proposed the Learning without
Forgetting (LWF) method that uses previous model outputs as
soft labels to transfer knowledge and alleviate forgetting.

The continual learning in a distributed environment is cru-
cial in the context in which distributed devices are increasingly
interconnected. The paradigm of federated learning holds great
promise in the field of distributed machine learning. However,
there are merely a few discussions about continuous learning
in a federated environment. Casado et al. [29] presented a
novel framework called Light Federated and Continual Con-
sensus (LFedCon2). This framework offers a federated and
continual learning solution that specifically caters to devices
with limited resources, enabling them to engage in continuous
and localized learning processes. Huang et al. [30] introduced
an approach called Federated Cross-Correlation and Continual
Learning (FCCL), which addresses the issue of catastrophic
forgetting. FCCL incorporates knowledge distillation during
local updates, enabling the exchange of inter and intra-domain
information while maintaining privacy. The primary objective
of this approach is to mitigate the adverse effects of catas-
trophic forgetting throughout the learning process. In order
to prevent the interference from other clients and reduce the
communication cost, Yoon et al. [11] proposed Federated
Weighted Inter-client Transfer (FedWelT), which decomposes
the model parameters of each client into sparse task-specific
parameters and global federated parameters. However, none
of the above methods considers leveraging the federated
mechanism to transfer knowledge. Therefore, inspired by
the rehearsal method, we propose federated central memory
rehearsal, where the episodic memory is centrally generated
in the server to perform pseudo-rehearsal.

III. METHODOLOGY

This section provides a detailed overview of our FedCMR
framework. Section III-A describes the architecture of our
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Fig. 2. The schematic architecture of the proposed Federated Central Memory Rehearsal (FedCMR). The Memory Generator model, which generates the
pseudo data of old tasks, is depicted in the server cloud. The lower part of the diagram is the local clients participating in the federated learning, and each

client learns on a sequential data stream.

framework. Section III-B outlines our approach, providing
insights from both the server and client sides.

A. Overview

Fig. 2 illustrates the overall architecture of our proposed
Federated Central Memory Rehearsal (FedCMR), which re-
flects that the main characteristics of the FedCMR are se-
quential, distributed and collaborative. The novelty of this
framework resides in our pioneering proposition of maintain-
ing a Memory Generator model on the server side. This model
serves to address the challenge of catastrophic forgetting
within the context of federated learning. Our inspiration for
this approach stems from the generative replay method em-
ployed in continual learning. In this framework, we consider
that there are K local clients involved in the federated training
and they need to process the sequential arrival data streams
collected in real time. The server situated in the cloud consol-
idates the locally uploaded models from the clients, resulting
in the formation of a novel global model. Simultaneously, it
maintains a Memory Generator model that generates old task
pseudo data, which is fed with old task data sampled from
local clients. When each local client trains the current task
on the current dataset, the client samples a small part of data
and uploads it to the server synchronously. At the time that
a new task arrives, the old task pseudo data generated by the
central server are mixed with the new task data according to
the importance ratio for training. Accordingly, the knowledge
of the old tasks is preserved when new tasks arrive, which
means that the catastrophic forgetting challenge of federated
learning is alleviated. We illustrate the proposed proposal in
this paper formally in the algorithm diagram below. Table I
lists several essential notations in this framework.

TABLE I
LIST OF NOTATIONS

Notations Description
Do the sampled old task data from local clients.
Dyseudo the generated pseudo data of old tasks.
Df the local dataset for task ¢ of client k.
k the local model weight maintained by the client &
w L
t at global training epoch ¢
w9 the global model weight maintained by the central

server

B. Our Framework

The proposed FedCMR framework comprises two primary
components: the central server and the local client update
mechanism. The central server plays a dual role by aggregating
the locally uploaded weights from clients and housing a Mem-
ory Generator module responsible for generating pseudo data
corresponding to previous tasks. On the other hand, the local
clients conduct updates on their individual datasets, which are
augmented with pseudo-data obtained from the central server,
which helps mitigate the problem of catastrophic forgetting.

1) Central Server

As one of the significant components in federated learning,
the central server is deployed in the cloud for interactive
training with distributed local clients by communicating model
weight parameters. Prior to the commencement of federated
training, the global weight w9 is initialized by the central
server and distributed to m local clients as their respective
local initial models. During each global communication epoch,
a subset of local clients is selected, and upon completing
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the model training on their respective datasets, they promptly
transmit their updated model weights w to the central server.
There are many federated aggregation algorithms, among
which the FedAVG algorithm, which is often used as a base-
line, is the most classic and effective. In this work, we choose
FedAVG as the baseline method for aggregating the local
models provided by the clients into a new global model. Con-
sequently, this updated global model weight w9 can be used as
the initial model weight for the next epoch training to continue
integrating the efforts of individual clients. In the proposed
FedCMR algorithm, to be different, we use the differential
privacy mechanism to protect the privacy of communication
data in interactive training. Common differential privacy noise
mechanisms that perturb the original dataset or intermediate
results are: Gaussian mechanism, Exponential mechanism, and
Laplace mechanism. To ensure privacy preservation while
minimizing the impact of differential privacy noise on the
original data, we employ the Gaussian mechanism for gradient
computation instead of the Laplacian mechanism. This choice
is motivated by the faster decay of the tail in the Gaussian
distribution compared to the Laplacian distribution. In the
context of approximating a deterministic function f using
a differential privacy mechanism, a common approach is to
add noise calibrated to f based on its sensitivity .S, which
is defined as the maximum absolute difference |f(d’) — f(d)]
between adjacent datasets d’ and d. Overall, the additive noise
mechanism of Gaussian is described as follows:

M(d) = f(d) + N (0,5% - 0?) (1)

where N (0, 5% - o2) represents the Gaussian distribution with
a mean of 0 and a standard deviation of S. It is worth
noting that the method described above can provide a relaxed
guarantee of (e, §)-differential privacy.

The central server in the cloud not only aggregates the local
model weights, but also maintains a Memory Generator model
which is fed with the sampled old task data synchronously
uploaded from the client and generates the pseudo data of the
old task. The Memory Generator model consists of a generator
G and a discriminator D. The generator G is responsible for
generating pseudo data of the old task, while the discriminator
D helps to distinguish between real old task data and the
generated pseudo data [14]. The G and D play against each
other to minimize the difference between the pseudo data
generated by G and the old task data, which is corresponding
to a zero-sum game. The generated pseudo data are distributed
to each local client to alleviate their forgetting of old task
knowledge as new tasks arrive. Using the synthetic samples
generated by the Generator model to replace the sensitive data
can ensure that the privacy of the original sensitive data is not
compromised during knowledge transfer.

2) Local Client

As the fundamental body of federated learning, the local
clients can be composed of an ocean of communicable devices
(Mobile Phones, IoT Devices, Automobiles, etc.) distributed in
different geographical regions. However, with the development
of communication networks (5G, WIFI, 6G, etc.), the data col-
lected in real time by these devices are usually not permanently
stored locally due to the memory or other resource limitations.

Therefore, the data of local clients are always in the form
of sequential data streams. In general, traditional federated
model training is found that the knowledge of previous tasks
is overwritten by the knowledge of the newly arrived task in
the data streams, which is called catastrophic forgetting.

Algorithm 1 Federated Central Memory Rehearsal (Fed-
CMR). There are K clients indexed by k. ¢ is the number
of sequential tasks, and Fj is the local epochs. B is the
local mini-batch size, C' is the participation ratio, and 7 is
the learning rate.

Input: Global initial parameter wy, local dataset of client &k
D,(cm), old task data D,;q < {}
QOutput: Anti-forgetting global model weights w?

1: initialize w9 and Dpseqdo > Server executes
2: for each task t = 1,2...t do

3: m < max(C - K, 1)

4: S; + (random set of m clients)

5: distribute Dpscudo and w9 to each client in .Sy
6: for each client k£ € S; in parallel do

7: wy, 1, Doig < ClientUpdate(w}', Dpseudo)
8: end for

9: w? i, TEwp

10: Dpseudo + GAN(D,1q)

11: end for

12: return w9

13:

14: ClientUpdate(w?, Dypseudo): > Client k& executes
15: upload Dyiq < sampled(Dy,) to Server

16: B < (split (Dy, + Dpseudo) into batches of size B )

17: for local round ¢ = 1,2...F; do

18: for batch b € B do

19: wyy < wy — Ve (wy;b)
20: end for
21: end for

22: return wy,_; to server

In the proposed FedCMR algorithm, each stochastically
selected client initializes its local model weights wF using
global weights w9 downloaded from the server. When a new
task arrives, the clients incorporate the generated pseudo data
from previous tasks with the local data for training in order
to mitigate the issue of catastrophic forgetting and preserve
the knowledge of the old tasks. The mixing ratio is based on
the importance metric . While training the current task on
the local dataset, each local participant uses the idle network
bandwidth at this time to upload a slice of sampled current
task data to the server. This method of asynchronous transfer
neatly offsets the communication cost incurred by uploading
the sampled old task data. Since uploading a small amount
of old task data directly may cause privacy leakage, we must
take measures to preserve the private data of these clients.
Specifically, we apply a differential privacy mechanism to add
Gaussian noise to these sampled old task data as above, which
can provide a relaxed (e,d)-differential privacy guarantee.
In FedCMR, we add noise to the original data to hide the
privacy identifying information. Therefore the client’s private
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data can be guaranteed not to be leaked. Upon completing the
local training, the clients transmit their respective local model
weights wF to the server for aggregation.

Algorithm 1 details the overall framework of FedCMR.
Line 2 initializes the global model w?Y and the pseudo data
Dpseudo- Lines 4-6 distribute the w? and Dpgeudo to the
clients participating in this round of training. In line 8, the
clients perform individual updates on their local models and
send both the updated local model and the sampled current
task data to the server. In line 10, the server consolidates
the models uploaded by the clients to construct a new global
model. In line 11, the server utilizes the Generator model to
update the pseudo data sample Dpseuqo With the old task data
Dyiq. Lines 15-23 are the steps for the local client update. In
line 16, the client samples the current task data and uploads
it to the server. The pseudo data Dscqq, distributed by the
server is mixed with the current task data and divided into
training mini-batches in line 17. In lines 18-22, each client
uses stochastic gradient descent for local training. Finally, in
line 23, the updated model is transmitted to the server.

IV. IMPLEMENTATION

In this paper, inspired by the replay method in continual
learning, we envision performing the replay method on edge
client nodes for the purpose of mitigating the catastrophic
forgetting challenge of federated learning. However, the par-
ticipants in federated learning are often resource-constrained
distributed devices (IoT, Mobile Phones, etc.) that may not
have sufficient resources to store all of the old tasks data.
Therefore, we design a novel approach FedCMR to address
this issue. This section introduces the specific implementation
of FedCMR framework.

A. Problem Statement

We first illustrate several basic terminologies in this paper.

1) Statement 1: In our federated continual learning frame-
work FedCMR, we consider a sequence of local train-
ing tasks T = (Tq,T2,...,Ty) for all participants.
Correspondingly, the clients are fed with a sequential
data stream D = (Dq,D2,...,Dy,), D; = (X;,Y,),
which consists of samples X; with corresponding la-
bels Y;. More importantly, the data of previous tasks
(Dg...D;_1) are not accessible when the participant
trains current task T; on dataset D;.

2) Statement 2: The Memory Generator model maintained
in the central server is a tuple < G,D >, where G
generates real-like samples, and the discriminator D
evaluates the generated samples to identify the differ-
ences between them and the real samples.

B. Central Memory Generation of Central Server

In the proposed FedCMR, we focus on task-incremental
sequential training cases in the continual learning. The central
server utilizes the Federated Averaging algorithm (FedAVG) to
perform weighted averaging of each client’s model parameter
w¥. This process produces a new global model parameter w9,

which serves as the initial model weight for each client in the
next global training epoch. The weighted aggregation of the
federated averaging is as follows:

“on

w9 Z ?’waﬂ (2)

k=1
where wﬁi{ is the updated global weight, and wfgrl is the local
weight trained on client k.

The server needs to train a Memory Generator model si-
multaneously while aggregating local model weights uploaded
from randomly selected clients, which can generate pseudo
data samples as close as possible to the real old task data.
The Generator model integrates the data from the current
task with the data from the previous task according to the
importance ratio r, thereby it can accumulatively reconstruct
a new input sample space and return the pseudo data with the
same distribution to the clients.

The FedCMR framework proposed in this paper leverages
the Memory Generator maintained in the central server to
achieve central memory rehearsal. The Memory Generator is
a generative model (GANs) that can generate observable sam-
ples from the real data distribution uploaded by local clients.
The GANs consists of a generator G and a discriminator D.
The generator G is trained to generate pseudo data that closely
approximates the distribution of real data. On the other hand,
the discriminator D is tasked with differentiating between the
distribution of real data and the pseudo data generated by
G. The generator network (Generator) and the discriminant
network (Discriminator) are interactively trained via the zero-
sum game. Through this training process, the Generator learns
to approximate the data distribution of real old task data from
clients and generate pseudo-samples (episodic memory) that
exhibit similar characteristics. The objective functions of the
two network tuple < G, D > in the Memory Generator model
can be defined as

max V(D,G) =Egrpy, (2)[log D(x)]
+ EZsz(z) [10g(1 - D(G(Z)))]

mén V(D,G) =E.np, (z)llog(l — D(G(2)))] 4)

3)

where 3 is the objective function of discriminator D, and 4 is
that of Generator G. In this paper, we use an optimized GAN
model, WGAN-GP [31], to enhance the performance of the
Generator for generating pseudo data.

C. Local Training of Clients

Each client in the federated environment has a local se-
quential task stream T = (T, T2, ..., Ty). The client needs
to preserve the knowledge acquired from the previous (¢ — 1)
tasks while training the current task ¢. Correspondingly, in
FedCMR, the participants need to upload a small amount of
sampled data of the current task with DP noise for central
memory rehearsal. For the purpose of optimizing commu-
nication efficiency, we adopt a technique of asynchronous
communication to transmit data samples. Each local client
can transmit data during the training process of the current
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task. After the current task training is completed, the clients
upload the local model weights for aggregation. Therefore, this
approach guarantees the efficient usage of the limited resources
(CPU, bandwidth) of distributed edge client.

After downloading the global weight w9 and the pseudo
data Dscud0 generated from the central server, the local client
k initializes the local model weight w* = w9. Then the client
k samples the current task i dataset D¥ and uploads it to the
central server, meanwhile, the pseudo data D40 and the
current task data D¥ are mixed according to the importance
ratio r for joint training. The overall loss function for local
training is as 5:

L' (wf) = TE(z )~ Dk [L(S (z;0]) ,y)]
+ (1 - T)E(m"yl)"’Dpseudn [L (S (J}l, wf) ’y,)}

where (x,y) denotes the samples and labels of the current
task, (2’,y’) denotes the generated pseudo-samples and labels
of the old tasks, w” denotes the model weight parameters of
client k£ on the task sequence, and L is the loss function.

&)

V. EXPERIMENT

In this section, we assess the performance of our Fed-
CMR on sequential arrival tasks on three different datasets:
five-mnist, permu-mnist and svhn-mnist datasets. The central
memory rehearsal based FedCMR outperforms other federated
continuous learning approaches in alleviating forgetting. In
Section V-A, we provide detailed information regarding the
design of the dataset and the experimental setup. In Sections
V-B - V-H we not only validate the effectiveness of the
proposed method in anti-forgetting on sequential datasets, but
also demonstrate its advantages by comparing the FedCMR
framework with other baseline models and state-of-art models.

A. Experimental Settings

To evaluate the effectiveness of our framework and cover a
broad range of learning problems, we separately train classical
neural networks on sequential datasets with various federated
learning algorithms. The configuration is described in detail
below.

1) Learning environment

The basic configuration of the federated learning simulation

system environment can be simply described by the following:

TABLE II
ENVIRONMENT CONFIGURATION

CPU:
GPU:

Intel(R) Xeon(R) E5-2650 v4
NVIDIA TITAN Xp.
Python 3.7.0
Pytorch 1.7.1

Programming language:

Machine learning library:

2) Dataset and models

The sequential arriving data used in this paper consists
of the MNIST dataset [32] and the SVHN dataset [33].
The MNIST dataset, a classic handwritten digits dataset in
machine learning, contains 60,000 image samples for training

TABLE III
DATASET DESCRIPTION

Number Original
Dataset of Division Basis g
Dataset
Tasks

five-mnist 5 5 groups of labels MNIST

permu-mnist 5 5 permutations MNIST
svhn-mnist 2 direct sampling SVHN, MNIST

TABLE IV

CONFIGURATION PARAMETERS OF FEDCMR MODEL

Parameters Value
Total available clients(7T'): 100
Client participation ratio(C'): 0.1
Local batch size(B): 32
Local epoch each task(E): 200
Mixing ratio(r): 0.5
Learning rate(l): 0.01

and 10,000 image samples for testing. SVHN is a real-world
dataset of house number images in Google Street View im-
agery used to develop machine learning and object recognition
algorithms. The SVHN dataset, which stands for Street View
House Numbers, consists of 73,257 training image samples
and 26,032 test image samples.

In this paper, we design three different sequential arrival
datasets five-mnist, permu-mnist, svnh-mnist. The five-mnist
dataset is formed by dividing the MNIST dataset into 5 groups
according to the labels {0,1,...,9}. The permu-mnist dataset
uses 5 different random permutations to rearrange the pixels
of the MNIST data, resulting in 5 different but related sets
of data. The svnh-mnist dataset is sampled from two datasets
MNIST and SVHN. We divide the datasets equally according
to the number of federated clients. The number of sequential
arriving tasks is the number of groups in the dataset. For the
five-mnist dataset, our five groups of data are sequentially
assigned to each client at five times, and the client will discard
the old task dataset once the new task arrives. We demonstrate
the essential information of these three sequential datasets in
Table III.

A four-layer convolutional neural network is trained on the
three different sequential arrival datasets in local clients. A
generative adversarial network (GAN) is employed on the
central server to accumulate client knowledge and generate old
task data. The GAN architecture includes a generator network
(Generator) and a discriminator network (Discriminator). The
Generator is composed of an encoder, a convolutional long
short-term memory network (LSTM), and a decoder. On the
other hand, the Discriminator is a five-layer convolutional
neural network. The specific configuration parameters of the
learning model can be found in Table IV.
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Fig. 3. The precision results of Task 1 in FedCMR framework with different
mixing ratios.

B. Experimental Results with Different Mixing Ratios

In the first experiment, the performance of the FedCMR
framework on the five-MNIST dataset is investigated by ex-
amining the influence of different mixing ratios . We analyze
the performance changes of FedCMR frameworks on Task 1 in
the sequential tasks by setting the mixing ratio in the training
as 0.1, 0.3, 0.5, 0.7, and 0.9. The experimental results are
shown in Figure 3.

Based on the observations from Figure 3, it is evident
that the FedCMR framework effectively mitigates the issue of
catastrophic forgetting in federated models when new tasks are
introduced, across different mixing ratios. Among the various
mixing ratios, the model performs best when the mixing ratio
r is set to 0.5, which may be because the knowledge of the
old task can be preserved without compromising the prediction
performance of the model for the current task.

C. Experimental Results with Different DP Noise Powers

In this subsection, we investigate the impact of different lev-
els of differential private noise on the performance of the Fed-
CMR model. To ensure data privacy during data transmission
between clients and the server, we introduce noise perturbation
on the client side. Specifically, Gaussian noise N ~ N(0, )
is added to the transmitted data during communication. The
resulting figure illustrates that the accuracy performance of the
FedCMR model is significantly influenced by the magnitude
of the added noise power. Notably, if a very large amount of
noise is added, it can cause the SGD algorithm to converge to
a local minimum solution, resulting in training failure of the
model. Please refer to Figure 4 for the experimental results.
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Fig. 4. The precision results of Task 1 in FedCMR framework with different
Gaussian noise powers.
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Fig. 5. The precision results of Task 1 in FedCMR framework with different
GAN models.

D. Experimental Results with Different GAN Models

In this experiment, we explore the impact of different GAN
models on the performance of the FedCMR framework on
the five-mnist dataset. We analyze the performance changes
of FedCMR frameworks on Task 1 in the sequential tasks
by using different GAN models in the central server. The
experimental results can be seen in Figure 5:

By employing the DCGAN [34] model or the WGAN-
DP [31] model within the FedCMR framework, the issue
of catastrophic forgetting when new tasks are introduced is
significantly alleviated, as demonstrated in Figure 5. The
performance of WGAN-DP model is about 3% higher than
that of DCGAN, which may be because WGAN-DP adopts
the gradient penalty instead of weight clipping to address the
challenges posed by gradient instability and vanishing gradi-
ents. Therefore, the FedCMR framework adopts the WGAN-
DP model to obtain better quality pseudo-data of old tasks to
solve the catastrophic forgetting problem.

E. Performance Against Other Models

In this section, we perform a comparison experiment on
the five-mnist dataset to verify the anti-forgetting capability
of the client model in the FedCMR framework for Task 1
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in the sequential task stream. The models involved in the
comparison include the federated learning model FedAVG, the
naive federated continual learning model Fed-EWC, and the
state-of-art federated continual learning model FedWelt and
FCCL.

In the experimental results, we use the precision metric to
accurately estimate the forgetting level on Task 1 of each
model. The experimental results of the comparison of each
framework are shown in Figure 6. Based on the figure,
it is evident that FedAVG exhibits significant performance
degradation in the sequential task stream, indicating a notable
decline in its ability to retain previously learned knowledge.
Obviously, our proposed FedCMR model demonstrates signifi-
cant improvement in alleviating forgetting on Task 1 compared
to baselines, and it achieves slightly better performance than
the state-of-the-art method FedWelt and FCCL, as shown in
the experimental results. We compare these four methods as
follows:

ACCURACY
o o

Task1 Task2 Task3 Task4 Tasks

Fig. 6. The precision results of Task 1 in four different algorithm models
when the sequential tasks arrive.

1) The comparison of FedAVG and Fed-EWC: Obvi-
ously, compared to FedAVG, Fed-EWC tempers the per-
formance loss of Task 1 when subsequent tasks arrive.
The reason behind this is that the EWC method restricts
the variety of important weights by adding regularization
to the weights. However, the local EWC model has to
expand the network to obtain a higher precision due to
the regularization items.

2) The comparison of Fed-EWC learning and FedCMR:
Compared to Fed-EWC, the proposed method Fed-CMR
significantly alleviates the performance drop of Task
1 when subsequent tasks arrive. Resource-constrained
local clients are unaffordable for EWC network scaling.
As aresult, EWC can not work as efficiently as expected.
On the contrary, the central memory rehearsal method
in FedCMR is perfectly suited for federated learning
mechanisms to restore old task knowledge.

3) The comparison of state-of-the-art models and Fed-
CMR: FedWelT decomposes each local model param-
eter into sparse task-specific parameters and global fed-
erated parameters based on the calculation of the impor-
tance and FCCL utilizes the available unlabeled public
data to facilitate communication and employs a cross-
correlation matrix to acquire a transferable representa-
tion that can generalize well in the presence of domain
shift. These additional steps contribute significantly to

the computational complexity, distinguishing it from the
proposed FedCMR approach. Comparative experimental
results show that FedCMR’s method exploiting federated
mechanisms to transfer knowledge is slightly superior
at recovering old task knowledge than the state-of-the-
art method FedWelT. This is presumably because the
limited computing resources of the clients cannot afford
the calculation of the importance of the local model
weights in the FedWelT framework.

Furthermore, we found that traditional federated learn-
ing suffers from severe catastrophic forgetting on real-world
streaming datasets from the above comparison. For this reason,
federated learning may be difficult to gain practical application
in the real world. But fortunately, we can clearly notice
the fruitful results of the proposed FedCMR framework on
streaming datasets that it not only alleviates the forgetting of
old tasks knowledge in local clients when a new task arrives,
but also leverages the communication mechanism of federated
learning to not hinder the computational efficiency of local
clients.
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Fig. 7. The experimental results of FedAVG and FedCMR frameworks on
Task 1 in the sequential tasks with the number of clients participating in the
training as 5, 10, and 15.

F. Experimental Results with Different Amounts of Partici-
pants

In this subsection, we explore the impact of different num-
bers of clients on the performance of the FedCMR framework
on the five-mnist dataset. We analyze the performance changes
of FedAVG and FedCMR frameworks on Task 1 in the
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sequential tasks by setting the number of clients involved in the
training as 5, 10, and 15. Figure 7 presents the experimental
results:

We can observe that the traditional FedAVG framework
suffers from severe forgetting of Task 1 in three different
numbers of participating clients. Furthermore, Figure 7 illus-
trates how different client numbers affect the anti-forgetting
level of the proposed FedCMR framework. We can notice
that when the number of clients is 5, the accuracy of Task
1 of FedCMR drops by about 13% when Task 5 arrives.
With an increasing number of clients, the FedCMR framework
demonstrates improved anti-forgetting performance. This en-
hancement can be attributed to the federated communication
mechanism employed by FedCMR, which effectively mitigates
catastrophic forgetting. The more client efforts aggregated, the
more accurate the memory of old tasks generated by the central
server. Hence, it can be concluded that the anti-forgetting
capability of the FedCMR framework is positively correlated
with the number of participants.

PRECISION

200 400 600 800 1000
EPOCH
T | T2 T3 e T4 mmmm TS

(a) five-mnist-none

PRECISION

200 400 600 800 1000
EPOCH
=T | T2 T3 e T4mmmm TS

(b) five-mnist-FedCMR

Fig. 8. Accuracy variation of individual tasks in the sequential task streams
in traditional federated learning and FedCMR on five-mnist dataset.

G. Effectiveness Experiments of FedCMR

In this section, we estimate the effectiveness of the proposed
FedCMR method on three sequential datasets, five-mnist,
permu-mnist, and svnh-mnist, compared with the baseline. We
validate and visualize the performance variation of each task
in the sequential tasks in the following experiments.

1) Experiment on five-mnist dataset

In this experiment, we separate mnist into 5 groups of data
by label, which arrives sequentially in each client. In Figure
8(a), we can clearly see that in traditional federated learning,

whenever a new task arrives at the client, the previous task
accuracy will drop sharply from about 90% to about 23%. This
suggests that the client node faces the challenge of catastrophic
forgetting, where the knowledge acquired from the previous
task in the local model is overwritten by the knowledge gained
from the new task. However, in Figure 8(b), whenever a
new task arrives, the accuracy of the previous task barely
drops. This shows that the local client model in the FedCMR
framework fruitfully alleviates catastrophic forgetting.
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Fig. 9. Accuracy variation of individual tasks in the sequential task streams
in traditional federated learning and FedCMR on permu-mnist dataset.

2) Experiment on permu-mnist dataset

In this experiment, we first define 5 random permutations
of MNIST image pixels. The pixels of the images in MNIST
are then rearranged according to these 5 permutations. In this
fashion, the clients can obtain 5 groups of sequential arriving
datasets. In Figure 9(a), we can clearly see that in traditional
federated learning, the previous task accuracy drops sharply
from about 88% to about 25% whenever a new task arrives
at the client. This suggests that the knowledge of the previous
task is overwritten by the knowledge of the new task to cause
the problem of catastrophic forgetting. However, in Figure
9(b), when each new task arrives, the accuracy of the previous
task only approximately drops by 5%. This shows that the
FedCMR framework has the ability to avoid the catastrophic
forgetting problem in the task sequence.

3) Experiment on svnh-mnist dataset

In this experiment, we use two different but related datasets,
MNIST and SVHN datasets, to test the effectiveness of Fed-
CMR. As shown in Figure 10 below, when the model trained
on the SVHN dataset by the client in the traditional federated
learning framework encounters a new task using the MNIST
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Fig. 10. Accuracy variation of individual tasks in the sequential task streams
in traditional federated learning and FedCMR on svnh-mnist dataset.

dataset, the performance of the previous task drops drastically.
Conversely, in the FedCMR framework, old tasks can maintain
high accuracy when new tasks arrive, which demonstrates that
FedCMR can still alleviate forgetting when faced with task
sequences from different datasets.

Therefore, from the above three experiments on the 5
random permutations of pixels dataset, the 5 disjoint groups
of dataset, and different but related dataset respectively, we
can observe that in FedCMR the performance of old tasks
decreases on average by about 5% when new task arrives,
which demonstrates that FedCMR can effectively mitigate
the catastrophic forgetting problem in most related sequential
datasets.

H. Training and Validation Results for FedCMR

In this section, we examine the training progress of the
federated model in the FedCMR framework to observe the
fluctuations in the accuracy and loss function on the five-mnist
dataset. The plots in Figure 11 display the curves representing
the accuracy and loss of the model during the initial 200
epochs of training on Task 1.

1. FedCMR in Real-World Applications

FedCMR is particularly well-suited for deployment in real-
world scenarios such as smart cities and healthcare systems.
In smart cities, where edge devices continuously generate data
streams for tasks like traffic management and environmental
monitoring, catastrophic forgetting is a significant concern.
FedCMR can help retain knowledge across tasks such as
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Fig. 11. Training and validation results of Task 1 in the sequential task
streams for FedCMR training on five-mnist dataset.

predicting traffic patterns or detecting anomalies, ensuring that
historical data is not forgotten as new data comes in.

Similarly, in healthcare, where patient data streams con-
tinuously feed into models for diagnoses and treatments,
FedCMR can preserve knowledge from older diagnoses while
incorporating data for new medical conditions. For instance,
models trained for the diagnosis of chronic conditions can
retain their effectiveness even when new, emergent diseases,
such as COVID-19, require additional training. The key chal-
lenges in these applications include ensuring data privacy
under regulations like HIPAA and GDPR and managing the
limited computational resources of edge devices in both smart
cities and healthcare environments. FedCMR’s design, which
offloads intensive computations to the central server, mitigates
some of these challenges by reducing the burden on local
devices.

VI. CONCLUSION

In this paper, we propose a FedCMR framework to address
one of the key challenges faced by federated learning on cur-
rent real-world sequential data streams: catastrophic forgetting.
Specifically, in this paper we explore leveraging the federated
learning communication mechanism to achieve efficient recov-
ery of old task knowledge. FedCMR ensures the preservation
of knowledge from old tasks in the sequential task stream
without compromising communication efficiency. Finally, we
estimate the effectiveness of the FedCMR framework in miti-
gating forgetting on three sequential datasets. The experimen-
tal results confirm the effectiveness of the proposed method
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in alleviating catastrophic forgetting, surpassing baselines, and
achieving slight improvements compared to the state-of-the-art
method FedWelt. Going forward, our future work will focus
on optimizing the proposed framework through techniques
such as model compression and multi-center FedCMR. These
optimizations aim to enhance the learning performance and
further improve the overall efficiency of the framework.
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