
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 73

Architectural Design and Test Case Analysis of a Simulator for
Failure Localization

Xiangzhu Lu1, Yan Jiao1, and Pin-Han Ho1

1Department of Electrical and Computer Engineering, University of Waterloo,
200 University Ave W, Waterloo, ON, N2L 3G1, Canada

This paper presents the design and implementation of a simulator comprising the following components: a rule database, a
topology generator, a failure generator, and an alarm generator. The topology generator produces network topologies to simulate
various network conditions, while the failure generator generates simulated failures. Subsequently, the alarm generator utilizes the
rule database to generate corresponding alarm data. The generated data structures include failures/alarms, alarm flows, alarm
chains, and alarm correlation trees. Furthermore, a test case is introduced to validate the accuracy of the simulator.

Index Terms—Optical Transport Network (OTN), Failure Localization, OTN-based Simulator.

Fig. 1: OTN Wrapper [2]

I. INTRODUCTION

TELECOMMUNICATIONS networks have evolved sig-
nificantly to handle large data volumes at high speeds.

Traditional wired technologies like copper cables are facing
limitations in bandwidth, distance, and interference. Fiber
optic communication, on the other hand, overcomes these
challenges by transmitting data as light signals, offering
greater capacity, speed, and reliability. To ensure compati-
bility across manufacturers, standards like Optical Transport
Network (OTN) have emerged. OTN, an ITU-T standard, ef-
ficiently transports, switches, and multiplexes various services
onto a single high-capacity optical lightpath [1]. Referred to
as a “digital wrapper,” OTN encapsulates data frames from
different clients, including IP, Ethernet, storage, digital video,
and SONET/SDH, for transporting across optical networks,
as depicted in Figure 1. Additionally, OTN supports error
detection and correction through forward error correction
(FEC) overhead.

However, even the most robust networks are susceptible
to equipment malfunctions and environmental threats. When
such challenges arise, localizing the source of failures becomes
crucial. Failure localization is the process of tracing signals
within the network to determine or localize the initial mal-
functioning node(s). A failure event can occur unexpectedly

Manuscript received April 19, 2024; revised August 21, 2024. Correspond-
ing author: Pin-Han Ho (email: p4ho@uwaterloo.ca).

at any board or fiber segment, disrupting the optical signals
traversing through it. Subsequently, the failure may trigger
alarms that propagate across multiple boards nearby and/or
those situated in geographically distant areas, depending on
network topology and traffic distribution. However, only alarm
events are recorded in the OTN control plane, and those events
encompass not only the root alarms triggered directly by a
failure but also alarms that have propagated from other alarms.
To ensure the efficient troubleshooting and maintenance of the
network, it is essential to pinpoint the root location of failure
by analyzing these alarm records.

Given the complexity and critical nature of this task, de-
veloping an efficient failure localization method is imperative.
Such a method significantly reduces the time required for man-
ual tracing back to the failure location. However, training this
method requires a substantial amount of data and real-world
data is difficult to obtain and often limited in scope. Therefore,
developing a simulator is crucial. The simulator serves as a
virtual environment where different network conditions and
failure scenarios can be replicated in a controlled manner. It
not only accurately reproduces real-world scenarios but also
proactively generates potential failure scenarios.

This paper introduces an enhanced version of the OTN-
based simulator, building upon the groundwork laid by its
original version as discussed in [3]. Unlike the original version,
which required manual coding of network topologies, the
new simulator integrates a topology generator to automatically
create diverse topologies and traffic scenarios. Furthermore,
it operates at the board level rather than the node level,
improving modularity and enabling the reuse of board-search
functions across all node and board types. Additionally, the
alarm generator has been improved with features such as
random propagation times between alarm pairs, unique Alarm
IDs, and the introduction of noise alarms to test the anti-noise
capabilities of failure localization methods.

The rest of the paper is organized as follows. Section II
provides a comprehensive overview of the main components
and concepts defined in the simulator. Section III delineates
the architecture of the simulator. Section IV demonstrates a
test case for the proposed simulator. Section V summarizes

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 74

(a) (b)

Fig. 2: Example of Dynamic Topology

this paper and delineates its limitations.

II. KEY CONCEPTS AND DEFINITIONS

A. Topology

Topology is the physical arrangement of nodes and con-
nections in the network. In the context of alarm propagation,
if alarm A triggers alarm B, then their locations must be
connected in the topology, either directly or through a path.

A topology can be static or dynamic. A static topology
assumes that the network components (nodes and connections)
remain unchanged over time. On the contrary, a dynamic
topology assumes that the nodes and connections can be added
or removed to form different network states. In the simulator,
a network state is represented by a sub-topology of the entire
network. To be more specific, the nodes and connections in a
network state constitute a subset of those present in the entire
network. Figure 2 is an example of dynamic topology, where
Figure 2a is the entire network and Figures 2b is one of its
network state. A static topology has only one network state.

B. Board

A board serves as the smallest unit in the topology. There
are five types of boards in the simulator: FIU, OA, OM, OD
and OTU. Fiber interface unit (FIU) serves as an intermediary
between fiber and another node. A connection exists between
two nodes when their FIUs are linked by two fibers in opposite
directions. Optical multiplexer (OM) and optical demultiplexer
(OD) boards facilitate the addition/dropping of optical signals,
while the optical amplifier (OA) boosts signal strength. Lastly,
the optical transponder unit (OTU) serves as the endpoint
of a lightpath, where each OTU corresponds to at most one
lightpath.

Similarly, a fiber connects two boards together. It is es-
sential to recognize that fibers possess directionality. For
example, an OA FIU fiber denotes a fiber from an OA board
to a FIU board. There are eight types of fiber: FIU FIU,
OA FIU, FIU OA, OA OD, OD OM, OM OA, OD OTU
and OTU OM.

C. Node

A node, comprising boards and fibers, represents an equip-
ment in the network. There are two types of nodes involve
in the simulator: reconfigurable optical add-drop multiplexer
(ROADM) and optical line amplifier (OLA). Their structures
are shown in Figures 3 and 4.

In the case of OLA, all boards and fibers have a fixed count
and layout. However, the number of OTUs in a ROADM

Fig. 3: ROADM Structure

Fig. 4: OLA Structure

depends on the quantity of lightpaths originating from and
terminating at it.

D. Lightpath

A lightpath is a directional path between two OTUs in the
topology. Below are the three scenarios in which a node can
possess a lightpath, along with their corresponding board-level
paths:

• The lightpath originates from a node:
– ROADM: OTU → OM → OA → FIU → . . .
– OLA: there will be no lightpath originating from it.

• The lightpath terminates at a node:
– ROADM: . . .→ FIU → OA → OD → OTU
– OLA: there will be no lightpath terminating at it.

• The lightpath traverses through a node:
– ROADM: . . .→ FIU → OA → OD → OM → OA

→ FIU → . . .
– OLA: . . .→ FIU → OA → FIU → . . .

We can observe that the board-level path has a fixed pattern.
Therefore, given the initiating and ending OTUs, the board-
level lightpath can be derived from the node-level lightpath.
In the simulator, a lightpath is represented by a list of boards.
However, to enhance clarity and simplicity, this paper will
depict lightpaths at the node level.

A traffic comprises a list of lightpaths, and a network state
encompasses only one traffic, including all the active lightpaths
transporting signals in the network state.

E. Alarm

Failure is an exceptional event that can trigger alarms in
the OTN. It can occur on any board or fiber in the topology.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 75

TABLE I: Example of Failure and Corresponding Alarms

Alarm type Location Time ID Failure ID Is root Is noisy
board faulty ROADM5-OD1 06:00:00 40 40 false false
OCh LOS P ROADM5-OTU1 06:00:10 264 40 true false
OCh LOS P ROADM7-OTU93 06:00:04 265 40 true false
OMS A P ROADM5-OD1 06:00:07 266 40 true false
OCh A P ROADM5-OTU1 06:00:14 267 40 false false
OCh A P ROADM7-OTU93 06:00:15 268 40 false false

Fig. 5: Example of Alarm Correlation Tree

Alarm is an event triggered by an alarm/failure, which can
only be located on a board. When an alarm directly results
from a failure, it is considered the root alarm of that failure. It
is worth noting that a single failure can generate multiple root
alarms. Table I provides an illustrative example of a failure
and its corresponding alarms, with the definition of each field
detailed below.

• Alarm type denotes the category of the alarm/failure. The
simulator defines a total of 25 alarm types and 2 failure
types.

• Location denotes the board/fiber where the alarm/failure
occurs.

• Time denotes the moment when the alarm/failure happens,
measured in seconds.

• An unique ID is assigned to every alarm and failure.
• Failure ID is the ID of the failure which leads to the

alarm.
• Is root indicates whether the alarm/failure is a root alarm.
• To test the anti-noise capability of the failure localization

method, random noisy alarms can be added to the alarm
set. Is noisy indicates whether the alarm is a noisy alarm.

To demonstrate the causal relationship within the failure and
alarm set, the concept of alarm flow is introduced. An alarm
flow consist of either a failure and an alarm or two alarms,
where A → B indicates that failure/alarm A triggers alarm B.
The aggregation of all alarms and alarm flows of one failure
forms an alarm correlation tree, as given in the Figure 5,
using the same failure example in Table I.

Each leaf alarm in the alarm correlation tree is associated
with an alarm chain, which is a path from failure to respective
leaf alarm. In Figure 5, there are four alarm chains: 40 → 264,
40 → 265, 40 → 266 → 267 and 40 → 266 → 268.

III. SIMULATOR ARCHITECTURE

A simplified architecture of the simulator is depicted in
Figure 6, where dynamic topology is employed. To generate
the desired alarm data, the topology generator will first create
a topology according to the specified requirements. Then, for
each network state, traffic will be generated based on the
required number of lightpaths. The board/fiber list comprises
all boards and fibers in each network state. Subsequently,

Fig. 6: Simulator Architecture

the failure generator will randomly select failure locations
from these boards and fibers. Finally, the alarm generator
can generate alarm data for each failure based on the rules
provided by the rule database.

A. Rule Database

The rule database is stored in MySQL and accessed by the
simulator through the PyMySQL library. It provides informa-
tion about the propagation behavior of each alarm type and
failure type. To make a query, the simulator needs to input
“Board” and “Receive Detect Event”, after which MySQL
will output the values of “Output Board”, “Output Type”, and
“Output”. Here is an explanation of each attribute:

• Board is the location type of the input failure/alarm. It
is required because the occurrence of an alarm type on
different location types may result in different outcomes.
For example, if an OMS LOS A alarm is detected by an
OD, it will propagate an OCh LOS P alarm to the OTU.
However, if the same alarm type is detected by an OM,
it will trigger an OMS SSF E alarm on the OD.

• Receive Detect Event refers to the type of the input
failure/alarm.

• Output Board is the location type of the alarm that will
be triggered.

• Output Type specifies the direction of propagation, includ-
ing transmit downstream, transmit upstream and locally
report. If the output type is transmit downstream, the
alarm propagates along the direction of fibers. Con-
versely, if the output type is transmit upstream, the alarm
propagates in the opposite direction of fibers. Locally
report means that the alarm/failure triggers another alarm
at the same location.

• Output is the type of the alarm that will be triggered.
Table II are two sample rules in the rule database. The

first rule is a failure → alarm rule. If OA OD detects a

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 76

TABLE II: Example of Rules

Board Receive Output Output Type OutputDetect Event Board
OA OD fiber cut OD transmit downstream OMS LOS A

FIU OTS LOS B FIU transmit downstream OTS LOS A
OD transmit downstream OMS SSF B

Fig. 7: Flowchart of Static Topology Generator

fiber cut failure, it will transmit an OMS LOS A alarm along
the direction of fibers to the next OD. The second rule is a
alarm → alarm rule. After an OTS LOS B is reported on
FIU, it will trigger two alarms: an OTS LOS A on FIU and
an OMS SSF B on OD. Let a (location type, failure/alarm
type) pair be a rule event in the rule database. It is noticeable
that a rule event can trigger multiple other rule events, and
conversely, multiple rule events can trigger the same rule event.

B. Topology Generator

1) Static Topology Generator
To generate a static topology, two parameters are required:

Number of Nodes, which determines the size of the topology,
and Number of lightpaths, representing the traffic volume. The
flowchart of the static topology generator is shown in Figure
7, and the step-by-step procedures are outlined below:

• A random node-level directed graph is generated with
the help of NetworkX package. The ratio of ROADMs is
randomly selected between 0.85 and 0.95.

• Since static topology has only one network state, there is
no necessity to select a subset of nodes and connections
from the entire network. Therefore, the network state is
regarded as identical to the entire network.

• Next, a number of lightpaths will be generated based
on the network state, where the pseudo-code is provided
in Algorithm 1. The number of available OTUs should
be significantly larger than the number of required light-
paths.

2) Dynamic Topology Generator
The process of generating a dynamic topology is similar to

that of a static topology:
• A random node-level directed graph is generated to form

the entire network.
• To mimic the real-life scenario where lightpaths are added

and removed over time, we first establish the list of

Algorithm 1 Generate Lightpaths

Input: network state NS, number of lightpath NL

Output: NL unique lightpaths
O = all OTUs in NS
L = ∅
for k = 1 to NL do

bs = randomly select an OTU from O
n = node location of bs
ln = node-level lightpath with start node n
while ∃ a neighbour r of n do

add r to ln
n = r

end while
be = randomly select an OTU from N
lb = board-level lightpath given ln, bs, be
add lb to L
remove bs, be from O

end for
return L

Fig. 8: Flowchart of Dynamic Topology Generator

traffics, and then construct the network state based on
each traffic. The pseudo-code is provided in Algorithm 2
and the flowchart is given in Figure 8.

Algorithm 2 Generate Traffics

Input: entire network EN , number of traffic NT , number of
lightpaths for each traffic N1, N2, · · ·NNT

Output: NT unique traffics T1, T2, · · · , TNT
and NT network

states NS1, NS2, · · · , NSNT

T1 = Generate Lightpaths(EN , N1)
NS1 = all nodes and connections used in T1

for k = 2 to NT do
Tk = randomly remove some lightpaths from Tk−1

NSk = all nodes and connections used in Tk

NSk = randomly add some nodes and connections from
EN −NSk

Tk = Tk+ Generate Lightpaths(NSk, Nk − |Tk|)
end for

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 77

C. Failure Generator

The simulator can generate failures based on either a list
of location types or a list of locations. To produce a list
of failures, the simulator will first generate a list of time
instances, indicating when each failure occurs. By default,
we assume that each failure occurs at the beginning of each
minute. Moreover, the number of failures per minute should
be specified with the default set to 1. Then, the simulator
will select a list of locations if not provided. With a location
type, the generator will first determine the eligible node
type. For example, if the location type is OM, then only
ROADMs are valid. Subsequently, a random node with the
required node type(s) is selected from the network state, and
a random location with the required location type is chosen
from the node. After determining the location, the failure type
can be derived. Currently, there are only two failure types:
fiber cut and board faulty, which occur on fiber and board
correspondingly. Since each location can fail only once, the
ID of the failure is set to the ID of the location. Now that all the
attributes are prepared, the list of failures can be constructed.

D. Alarm Generator

The architecture of the alarm generator comprises two
buffers, one event processor and two containers. Buffer A
stores all the failure events that haven’t been processed, while
buffer B stores all the events resulting from a single failure
event. The event processor takes an event as input and outputs
all the alarms triggered by the event. The two containers store
all the alarms and alarm flows generated. The steps to generate
alarms given a list of failures are outlined below:

Initially, buffer A contains all the failures, while buffer B
is empty. Then, the first failure F1 in buffer A is moved to
buffer B for processing.

Fig. 9: Alarm Generator (Status 1)

F1 is input to the event processor, which then returns alarms
A1 and A2. Then the alarms, along with their corresponding
alarm flows F1 → A1 and F1 → A2, are added to the
containers. Additionally, a copy of each alarm is appended
to buffer B, as they may trigger further alarms.

Fig. 10: Alarm Generator (Status 2)

Then, the next event in buffer B is passed to the event
processor, and the new outputs are added to both the containers
and buffer B.

Fig. 11: Alarm Generator (Status 3)

If no alarms are returned by the event processor, nothing
will be added to the containers and buffer B. Keep processing
the events until buffer B is empty. Now we have all the alarms
and alarm flows that result from F1. Then the next failure in
buffer A is moved to buffer B, and the aforementioned steps
are reiterated. The alarm generation process terminates until
buffer A and B are both empty. At this point, the containers
hold all alarms and alarm flows generated from the list of
failures.

E. Event Processor

Upon receiving an event ei as input, the event processor will
first extract the board type from its location. Subsequently, it
will input this information, along with ei’s alarm type, into
the rule database. Then the rule database will return a list of
tuple (Output Board, Output Type, Output), as elaborated in
Section III-A.

For each tuple retrieved, the event processor will generate
a list of alarm events. The number of alarm events produced
corresponds to the number of locations that meet the speci-
fied criteria. For example, if the retrieved tuple is (Transmit
downstream, OTU, OCh LOS P), and there are two OTUs
located downstream of ei, then two alarm events will be
created, each corresponding to one of these locations. The
subsequent content in this section expounds on the procedure
for generating each attribute in the alarm event.

• The alarm type will match the value of the Output
specified in the tuple.

• The location is determined by all the values within the
tuple, alongside the board-level network state. There are
three cases:

– Case 1: Output Type is “to board”.
A single alarm event will be generated, and its
location will be identical to that of ei.

– Case 2: Output Type is “transmit down-
stream/upstream”, Output is an OTS/OMS alarm.
The processor will search for all boards in the
network state that fulfill the following criteria:
∗ The board possesses a board type matching Output

Board.
∗ There exists a path between ei and the board in

the direction indicated by the Output Type.
∗ No other boards with the Output Board type are

located along the path.
To optimize runtime, the processor will not manu-
ally search through all boards in the network state.
Instead, it will conduct a breadth-first search starting
from the location of ei.
A queue is utilized, where boards are dequeued
sequentially at each step, and their neighbors are

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 78

inspected to determine whether they should be en-
queued or discarded, according to Algorithm 3. It
is worth noting that this algorithm only addresses
the scenario where the Output Type is “transmit
downstream.” In the event of “transmit upstream,”
the predecessors of each board will be explored
instead.

Algorithm 3 Search Boards

Input: network state NS, ei’s location bi
Output: boardlist

Q = Queue(bi)
boardlist = ∅
while Q is not empty do

newQ = Queue()
while Q is not empty do

b = Q.dequeue()
for n in b.successors do

if n.type == Output Board then
boardlist.add(n)

else
newQ.enqueue(n)

end if
end for

end while
Q = newQ

end while

– Case 3: Output Type is “transmit downstream”, Out-
put is an OCh alarm.
The processor will iterate through all lightpaths,
specifically identifying those that traverse the faulty
board and subsequently pass through the location
of ei. It will then return the endpoints (OTUs)
corresponding to these identified lightpaths. In the
context of OCh alarm, there is no scenario where
the Output Type is “transmit upstream”.

• To simulate the real-life scenario, a random integer will
be selected to represent the time required for an event
to trigger another. To be more specific, for any event eo
triggered by ei, its occurrence time will be the time of
ei plus a randomly generated duration ranging from 1 to
10 seconds.

• The alarm container will keep track of the number of
alarms it receives and increment the ID by 1 each time
a new alarm is inputted.

• The alarm event will inherit the failure ID from the event
that triggers it.

• Is root will be set to true if the alarm type of the parent
event ei indicates a failure; otherwise, it will be set to
false.

• By default, Is noisy is set to false unless explicitly
modified.

IV. CASE STUDIES

In this section, a dynamic topology with three network states
will be generated to evaluate the performance of the topology

(a) Network State 1 (b) Network State 2

(c) Network State 3

Fig. 12: Network States in Dynamic Topology

TABLE III: Parameters Input to Topology Generator

Number of Nodes Number of Lightpaths
Network State 1

10
4

Network State 2 5
Network State 3 6

TABLE IV: Traffic in Network State 1

(OTU44)→ROADM1→ROADM0→(OTU87)
(OTU72)→ROADM8→ROADM7→ROADM5→(OTU3)

(OTU2)→ROADM1→ROADM3→(OTU17)
(OTU104)→ROADM8→ROADM6→ROADM4→(OTU83)

TABLE V: Traffic in Network State 2

(OTU44)→ROADM1→ROADM0→(OTU87)
(OTU8)→ROADM8→ROADM6→ROADM4→OLA9→ROADM3→

ROADM1→ROADM0→(OTU3)
(OTU18)→ROADM2→ROADM4→ROADM6→ROADM8→(OTU5)

(OTU106)→ROADM7→ROADM8→(OTU41)
(OTU2)→ROADM1→ROADM3→(OTU17)

generator. Furthermore, to validate the functionality of the
failure generator and alarm generator, a single-failure test case
will be introduced.

Given the inputs outlined in Table III, the topology generator
returns a topology with three network states, depicted in
Figure 12, alongside the corresponding traffics delineated in
Tables IV, V, and VI. It is noticeable that each network state
utilizes a subset of nodes and connections within the entire
network. Furthermore, the traffics exhibit duplicate lightpaths,
simulating scenarios where lightpaths are added and removed
over time.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 79

TABLE VI: Traffic in Network State 3

(OTU106)→ROADM7→ROADM8→(OTU41)
(OTU16)→ROADM6→ROADM5→ROADM3→

ROADM1→ROADM0→(OTU43)
(OTU90)→ROADM2→ROADM3→(OTU77)
(OTU44)→ROADM1→ROADM0→(OTU87)

(OTU110)→ROADM4→ROADM5→(OTU45)
(OTU2)→ROADM3→ROADM5→ROADM6→(OTU1)

TABLE VII: Alarms in Network State 1

Alarm type Location Time ID Failure ID Is root Is noisy
board faulty ROADM3-FIU2 06:00:00 61 61 false false
OTS A P ROADM3-FIU2 06:00:07 188 61 true false

TABLE VIII: Alarms in Network State 2

Alarm type Location Time ID Failure ID Is root Is noisy
board faulty ROADM3-FIU2 06:00:00 29 29 false false
OTS LOS C OLA9-FIU1 06:00:02 204 29 true false

OTS A P ROADM3-FIU2 06:00:10 205 29 true false
OTS BDI A ROADM3-FIU2 06:00:10 206 29 false false
OMS LOS A ROADM4-OM1 06:00:08 207 29 false false
OMS SSF P ROADM4-OD1 06:00:08 208 29 false false

OTS PMI OLA9-FIU2 06:00:06 209 29 false false
OTS BDI ROADM3-FIU1 06:00:13 210 29 false false
OMS BDI ROADM3-OM1 06:00:13 211 29 false false
OMS SSF ROADM4-OD1 06:00:19 212 29 false false

OMS SSF E ROADM6-OD1 06:00:14 213 29 false false

TABLE IX: Alarms in Network State 3

Alarm type Location Time ID Failure ID Is root Is noisy
board faulty ROADM3-FIU2 06:00:00 50 50 false false
OTS LOS C ROADM5-FIU1 06:00:06 218 50 true false

OTS A P ROADM3-FIU2 06:00:03 219 50 true false
OTS BDI A ROADM3-FIU2 06:00:13 220 50 false false
OTS BDI A ROADM4-FIU2 06:00:15 221 50 false false
OMS LOS A ROADM5-OM1 06:00:09 222 50 false false
OMS SSF P ROADM5-OD1 06:00:10 223 50 false false

OTS PMI ROADM5-FIU2 06:00:13 224 50 false false
OTS BDI ROADM3-FIU1 06:00:22 225 50 false false
OMS BDI ROADM3-OM1 06:00:20 226 50 false false
OMS SSF ROADM5-OD1 06:00:21 227 50 false false
OTS BDI ROADM4-FIU1 06:00:17 228 50 false false
OMS BDI ROADM4-OM1 06:00:20 229 50 false false
OMS SSF ROADM5-OD1 06:00:24 230 50 false false

OMS SSF E ROADM6-OD1 06:00:11 231 50 false false
OCh LOS P ROADM6-OTU1 06:00:20 232 50 false false
OCh LOS P ROADM6-OTU1 06:00:23 233 50 false false
OCh LOS P ROADM6-OTU1 06:00:30 234 50 false false
OCh LOS P ROADM6-OTU1 06:00:21 235 50 false false

Fig. 13: Alarm Correlation Tree in Network State 1

To investigate the influence of network state and traffic on
alarm propagation, the failure event with the same location is
applied to all three network states. The outcomes are presented
in Tables VII, VIII, IX and Figures 13, 14, 15.

We can observe that a slight alteration in network state and
traffic can yield significant variations in the alarms generated.
As depicted in Figure 16, a board faulty on FIU results in
two root alarm events. While the FIU-OTS A P rule event

Fig. 14: Alarm Correlation Tree in Network State 2

Fig. 15: Alarm Correlation Tree in Network State 3

Fig. 16: Rule Events for FIU Board Faulty

is successfully triggered across all three network states, the
FIU-OTS LOS C event fails to be invoked in network state
1. This is because there is no node located downstream of R3,
thus halting the propagation of subsequent alarms.

To compare the alarms generated in network state 2 and
3, we can first examine the physical placement of nodes
and connections in these two network states. In comparison
to network state 2, network state 3 removes node O9 and
introduces node R5. Additionally, connections R2 → R4, R3
→ O9, R4 → O9, R4 → R6 and R6 → R8 are removed,
while connections R2 → R3, R3 → R5, R4 → R5 and R5 →
R6 are added. As the downstream node of R3 changes from
O9 to R5, the root alarm OTS LOS C is reported on different
locations in these two network states. Furthermore, in network
state 3, R5 has two upstream nodes, R3 and R4, whereas O9 in
network state 2 has only one upstream node, R3. Consequently,
the OTS LOS C alarm triggers an additional OTS BDI A
alarm in network state 3.

Another difference between the alarm sets in these two
network states lies in the absence of OCh alarms in net-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 2, AUGUST 2024 80

work state 2. According to Figure 16, the rule events ca-
pable of triggering OCh alarms are OD-OMS SSF P, OD-
OMS SSF E and OD-OMS SSF, which occur on ROADM4-
OD1 and ROADM6-OD1 in network state 2. However, al-
though lightpath8−6−4−9−3−1−0 traverses the faulty board and
these two boards respectively, the lightpath passes through
these boards before encountering the faulty board. Hence, no
OCh alarms will be generated. In contrast, these rule events
occur on ROADM5-OD1 and ROADM6-OD1 in network state
3, and there is lightpath3−5−6 traversing through these boards
and the faulty board in the desired order. Consequently, OCh
alarms are successfully triggered by these rule events.

V. CONCLUSION

This paper presents the design and implementation of a sim-
ulator aimed at replicating alarm propagation behavior across
diverse network topologies. Nevertheless, it is imperative to
acknowledge the subsequent limitations:

• While the simulator effectively propagates alarms across
OTS, OMS, and OCh layers, it currently overlooks the
digital layers. Future enhancements should encompass
the digital layers within the simulator to provide a more
comprehensive representation of OTN.

• Manual editing of the rule database is currently required,
which is time-consuming and prone to errors. Addition-
ally, the rule database lacks consideration for the many-
to-one case, where a rule event may be triggered by
multiple rule events simultaneously. To address these
shortcomings, future updates of the simulator could incor-
porate a rule generator capable of efficiently generating
more complex rules.

• The current simulation framework lacks support for a
sufficient range of node types and board types, limiting
its ability to accurately simulate the complexities inherent
in OTN. Expansion of the simulator to include a broader
node and board types would enable more realistic mod-
eling of OTN environments.

REFERENCES

[1] “G.709: Interfaces for the optical transport network,” International
Telecommunication Union, ITU-T Recommendation, 2020. [Online].
Available: https://www.itu.int/rec/T-REC-G.709-202006-I/en2020

[2] “Ethernet Interfaces User Guide for Routing Devices,” 2023. [Online].
Available: https://www.juniper.net/documentation/us/en/software/junos/
interfaces-ethernet/topics/topic-map/ethernet-otn-options-overview.html

[3] Z. Li, P.-H. Ho, Y. Jiao, B. Li, and Y. You, “Design of an OTN-based
Failure/Alarm Propagation Simulator,” in 2022 International Conference
on Networking and Network Applications, 2022, pp. 1–5.

Xiangzhu Lu (x244lu@uwaterloo.ca) received a B.S. degree from the Univer-
sity of Waterloo in 2022 and a M.S. degree from the University of Waterloo
in 2024.

Yan Jiao (y42jiao@uwaterloo.ca) received a B.S. degree from China Univer-
sity of Geosciences Beijing in 2018 and a M.S. degree from the University
of Waterloo in 2020. She is pursuing a Ph.D. degree at the University of
Waterloo.

Pin-Han Ho (p4ho@uwaterloo.ca) (Fellow, IEEE) is currently a Full Profes-
sor in the Department of Electrical and Computer Engineering, University of
Waterloo. He is the author/co-author of over 400 refereed technical papers,
several book chapters, and the co-author of two books on Internet and optical
network survivability. His current research interests cover a wide range of
topics in broadband wired and wireless communication networks, including
wireless transmission techniques, mobile system design and optimization, and
network dimensioning and resource allocation.

https://www.itu.int/rec/T-REC-G.709-202006-I/en2020
https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet/topics/topic-map/ethernet-otn-options-overview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet/topics/topic-map/ethernet-otn-options-overview.html

	Introduction
	Key Concepts and Definitions
	Topology
	Board
	Node
	Lightpath
	Alarm

	Simulator Architecture
	Rule Database
	Topology Generator
	Static Topology Generator
	Dynamic Topology Generator

	Failure Generator
	Alarm Generator
	Event Processor

	Case Studies
	Conclusion
	References
	Biographies
	Xiangzhu Lu
	Yan Jiao
	Pin-Han Ho

