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This paper plans the energy-efficient UAV trajectory when a UAV gathers data from massive IoT devices in a given
area. The UAV trajectory design is addressed by two steps, i.e., IoT node clustering and UAV flight path planning for
scanning the clusters, which are formulated as Cluster Minimization (CM) problem and Traveling Salesman Problem
(TSP) in this work, respectively. The CM aims to contribute fewest clusters with minimal overlap to cover all the
IoT devices and the per cluster size approaching the UAV communication coverage. On the other hand, the TSP
seeks to design the shortest flight path to cover all the grouped clusters while minimizing energy consumption.
Specifically, this work mainly focuses on the CM problem since the TSP issues have been well addressed in the
past. In particular, we design a two-stage ILP optimization model to formulate the CM problem and propose two
flexible clustering algorithms with low complexity, i.e., segment clustering (SC) and its variant, saying shifted SC
(SSC). For the proposed ILP model and algorithms, we conduct extensive simulations under five different topologies
and compare the performance results with existing methods. The simulation results indicate that the performance
achieved by the proposed SSC algorithm is closest to the optimal results obtained from the ILP model. Moreover,
it outperforms the existing methods under most topologies regarding cluster numbers, trajectory path length, and
power consumption.
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I. INTRODUCTION

IN recent years, Unmanned Aerial Vehicles (UAVs) or
drones have been widely used in diverse civil appli-

cations, taking their high mobility, low maintenance cost
and ease of deployment into consideration [1]. Specifically,
they are widely used to monitor the real-time transport
traffic, remotely sense the extreme environment, provide
wireless connectivity under natural disasters or malicious
attacks, etc. Despite all benefits, UAVs’ capability in aiding
various applications is mainly restricted by its the flight
endurance which is supported by its limited available
power energy [1], [2].

Since power consumption is largely affected by drone
propulsion, a feasible solution is to control the UAV
movement carefully in order to avoid the unnecessary
energy consumption due to redundant drone ascending
and descending movements [3]. Besides, hovering and
cruising in the designed trajectory also contribute to the
UAV power consumption. These are then significantly
affected by the number of hovering points, the path length
of the trajectory, and the volume of data to collect.

Numerous studies focus on reducing the trajectory
power consumption [3]–[10], with most of them dividing
their solutions into the CM and TSP sub-issues. The
existing TSP approach can be categorized into three
classes: exact, approximate/heuristic and deep learning
(DL) based. Exact algorithm involves Dynamic Program-
ming algorithm and Integer Programming. For approx-
imate/heuristic methodology, Google proposed OR-tools
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with different heuristics (e.g. Tabu Search and Simulated
Annealing) for navigation in the search space and Local
Search techniques for refining solution [11]. Although
effective, the above methods are applied for static envi-
ronments. To serve dynamic network, [4] addressed the
online path planning through a double Q-learning network
(DQN) based algorithm. [5], [12] employs transformer to
solve TSP as a translation problem to convert the source
language (i.e. a set of 2D points) to the target language
(i.e. the point sequence with shortest length). To achieve
an improved optimization upon DL, the heuristic methods
such as weighted A* are applied.

On the other hand, the researchers have different views
on whether to elect cluster headers (CHs) in CM. Specif-
ically, some tend to elect a node in a cluster as a cluster
header (CH), which is to launch data harvesting over all
other cluster members and deliver them to the traversing
UAVs [7]–[9], [12]. Nonetheless, the assumption that all
IoT sensor nodes can communicate and collect data holds.
Others ensure that UAVs simultaneously collect data from
respective IoT devices in a cluster. For example, in [6],
the authors employed the OFDMA technique to achieve
this. Nonetheless, when serving massive IoT devices in the
fixed UAV altitude as they assumed, it is difficult to avoid
the considerable overlapping areas among clusters where
UAVs repeatedly scan the same members and collect
duplicate data. Selecting a specific set of IoT devices to
collect data is non-trivial since it is hard to number all the
devices and choose among them due to the sheer number
of devices deployed [13].

Meanwhile, in [10], the authors proposed an approxi-
mation algorithm which can optimally pick up the hover-



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 3, OCTOBER 2023 110

ing positions to minimal the overlap, aiming to address
a data harvesting utility maximization problem (UMP).
Their algorithm, however, requires a considerably high
time complexity, especially in the environment with the
dense deployment of IoT devices. The low time-complexity
method, namely the tiling method, has been proposed
in [14] to cluster the IoT devices. It covers the plane
with disjoint hexagons to minimize the overlapping areas
and designate the centers of hexagons containing at least
one IoT device as the hovering points. Some tiling-based
variants, such as tiling method with shifting (TS) and
tiling method with circular extension (TCE), have also
been proposed to further optimize the cluster results.
However, the empirical tests showed that those heuristics
cannot always ensure a good tradeoff between the overlap
and the path length.

Motivated by this, we propose concise algorithms which
can find a smallest set of clusters to cover all given
nodes with minimal overlapping areas in low complexity
meanwhile help construct tours with acceptable length.
We summary the major contributions of this work as
follows. First, the trajectory designing puzzle is formulated
as two sub-problems, saying cluster minimization (CM)
and traveling salesman problem (TSP). Next, we show
the NP-hardness of the CM puzzle based on Set Covering
Optimization Problem (SCOP). In addition to proposing a
two-stage integer linear programming (ILP) model, we also
propose a low complexity algorithm and its variant, saying
segment clustering (SC) and shifted segment clustering
(SSC), respectively, to deal with the CM puzzle. Finally,
the proposed approaches are compared with existing clus-
tering techniques through simulation under five disparate
topology scenarios.

The remainder of the paper is structured as follows. The
system model, assumptions, power consumption model
and problem statement are introduced in Section II. The
details of the two-stage ILP model and the proposed
SC and SSC algorithms for addressing the CM problem
are presented in Section III. The simulation results are
exhibited and analyzed in Section IV. Finally, we summary
the paper in Section V.

II. PRELIMINARIES

In this section, we present the details on the system
model, assumptions, power consumption model, and prob-
lem statement.

A. System Model

The environment is considered as a X ×Y m2 region
of interest with a set of N IoT, i.e., D = {d1,d2, ...,dN }
as shown in fig. 1. These IoT nodes are sprinkled in
the region and each one has a different coordinate, i.e,
di = (DX i,DYi), 1 ≤ i ≤ N. For each tour, a fully charged
UAV is dispatched to cruise and scan nodes of interest to
achieve data collection tasks with a designed trajectory.
Meanwhile, when the UAV moves to the proximity of an

IoT node, the later can build a light-of-sight (LoS) link to
deliver its sensory measurement to the former.

We assume that N IoT nodes can be grouped into
M clusters, where the coverage size of each cluster is
associated to the communication coverage of the UAV. We
denote each cluster as a set of several IoT nodes, i.e. T j,
which is defined as follows.

T j =
{

di

∣∣∣∣||di − c j|| ≤ γ,di ∈ D
}

,∀c j ∈ C (1)

where 1 ≤ j ≤ M and ||a − b|| calculates the Euclidean
distance between two positions a and b. These clusters
form a set CS = {T1, T2, T3, ...}.

The UAV hovers at a location right above the center of
each cluster to collect data from all nodes in the cluster
at the same data rate. Such a location is designated as a
way-point for the UAV, and the set of the way-points of
the clusters is denoted by C = {c1, c2, c3, ...}, where each
element corresponds to a 2D hovering coordinate, i.e.,
c j = (CX j,CY j), where 1 ≤ j ≤ M. The UAV trajectory is
formed by M+1 hovering points as a closed path. We repre-
sent it by Θ= (θ0,θ1, ...,θM ,θ0), where the path both starts
and ends θ0 referring to the depot; θi = (CX i,CYi, Zi)
is a three dimensional hovering point, where the third
coordinate Zi refers to height. Here, (CX i,CYi), the first
two dimensional coordinates in θi, are the same to that
of the way-point of cluster i. The following equation is to
calculate the path length L as the sum of the Euclidean
distance of any two neighboring hovering points,

L = ||θM −θ0||+
M−1∑
k=0

||θk+1 −θk|| (2)

For each flight, an UAV is assumed to have sufficient
energy to visit each hovering point in the trajectory only
once to achieve scanning the required area.

In this study, we consider the possibility that clus-
ters will likely overlap with each other, and thus the
UAV will collect replicated data from the nodes in the
overlapping areas, leading to redundant but remarkable
power consumption. This work aims to find an optimal
clustering decision to minimize the overlapping areas and
to construct an UAV flight trajectory with the optimal
energy efficiency for M+1 hovering points.

B. Problem Statement
The main factors leading to UAV power consumption

include hovering for data harvesting, trajectory travelling,
and UAV state changes between hovering and moving,
ascending/descending, etc. Let ρhover, ρtravel , and ρchange
represent the volume of energy consumed by the UAV in
joules per data unit in the hovering and data harvesting
process; per length unit in the trajectory cruising, and
UAV state shift, respectively. We denote energy consump-
tion due to hovering, flying, and UAV state changes as
Ehover, E travel , and Echange, respectively. The following
equation calculates the total UAV power consumption in
joules,

E total = Ehover +E travel +Echange (3)
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Fig. 1: The illustration of system model. γ refers to radius
of the UAV communication coverage. Each cluster appears
in shape of a circle, such as T1 and T2, where T1 =
{d3,d4,d5,d6,d7} and T2 = {d1,d2,d3,d4}, respectively. c1
and c2 are two cluster central points, above where UAV
hovers.

where
Ehover = ρhover ×ϵ, (4)

E travel = ρtravel ×L, (5)

and
Echange = 2(M+1)×ρchange (6)

with ϵ referring to the amount of collected data.
Based on the above definitions, the CM problem is

defined as follows. Given a set T = {T1,T2,T3, ...} of M

candidate clusters where the center of each cluster serves
as a candidate hovering coordinate hk = (HXk,HYk),1 ≤
k ≤M . Denote by H = {h1,h2,h3, ...} the set of candidate
hovering coordinates. The problem is to cover all the IoT
nodes by minimal clusters with minimal overlap. The first
stage aims at determining the minimum value M on the
number of clusters and the second stage is to form the
M clusters that can achieve minimal overlap. The CM
problem is NP-hard and its NP-hardness can be converted
to the Set Covering Optimization Problem (SCOP) [15].

C. NP-hardness of the Defined Problems

Theorem 1: The Cluster Minimization (CM) is NP-hard.
Proof: Denote an instance of SCOP and CM by PSCOP
and PCM , respectively. Given a finite set D= {1,2,3, ...} of
N integers, a finite family H of M subsets of D, SCOP
aims to find a smallest collection C ⊆H whose union is D.

Any SCOP instance can be reshaped as a CM instance
as follows. The set D of N integers in PSCOP corresponds
to the set D of N IoT nodes in PCM where each integer
i ∈ D in PSCOP can represent an IoT node di ∈ D with
1≤ i ≤ N. Then, the family H of M subsets of D in PSCOP
corresponds to the set T of M IoT cluster candidates in
PCM . Thus, there always exists a subset of D in H in PSCOP
corresponding to each cluster candidate in PCM , and the
primary objective of PCM is equivalent to that of SCOP in
finding the fewest sets whose union is D.

The solution of PCM is to form a set CS = {T1,T2, ...} of M
IoT node clusters with full coverage and minimized over-
lap. On the other hand, there is a collection C of subsets
of D corresponding to CS. Specifically, if

⋃
T j∈CS T j ̸= D,

which means the clusters in CS cannot fully cover all the
IoT nodes in set D, then C is not a feasible solution for
PSCOP since the union of C is not D. Otherwise, C can
serve as a feasible solution to PSCOP . Since a solution to
PCM can always correspond to a feasible solution to PSCOP ,
we can conclude that the solution is polynomial, and the
theorem thus holds.

III. MATHEMATICAL MODEL AND ALGORITHM FOR

CLUSTER MINIMIZATION PROBLEM

This section first formulates the CM problem into a
two-stage ILP model and then introduces a low-complexity
algorithm, i.e., Segment Clustering (SC), and its variant,
i.e., shifted SC (SSC).

A. ILP Model

The first stage of ILP model is to identify the minimum
value M on the cluster number. Assume that a scanning
area consisting of a set D of IoT nodes is represented by
a xy-plane divided into grids. We then assign a disk with
radius γ at the center point of each grid, where γ is the
UAV communication radius, trying to ensure that each
grid is the quadrilateral of the disk. Note that each disk
corresponds to a cluster. Based on this, we consider the
following parameters to develop the ILP model.

• Bi, j: a binary parameter that is one if cluster j ∈ T

covers the IoT node i ∈ D; zero otherwise.
• F: a large number.

In addition, the variables are defined as follows:
• αi, j: a dummy variable that is one if IoT nodes i is

grouped in cluster j ∈T ; zero otherwise.
• β j: a dummy variable that is one if cluster j ∈ T is

finally selected; zero otherwise.
The ILP objective is to minimize the hovering points,

which is converted to minimize the number of clusters,

min M = ∑
j∈T

β j (7)

s.t.
∑
j∈T

αi, j ≥ 1, ∀i ∈ D (8)

αi, j ≤β j, ∀i ∈ D, j ∈T (9)

αi, j ≤ Bi, j, ∀i ∈ D, j ∈T (10)

where eq. (7) refers to the primary objective of CM prob-
lem, i.e., the minimization of the number of the required
clusters; constraint (8) implies that each IoT node is
covered by at least one cluster; constraint (9) indicates
that each selected cluster should cover at least one IoT
node; constraint (10) ensures that an IoT node belongs to
the cluster j only if it is covered by the cluster.
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Based on the outcome M in the first stage, the following
ILP model aims to Search M clusters with minimal over-
lap, meaning to cover the minimal number of IoT nodes,
including the repeatedly covered ones, in the M clusters.
The objective is represented by eq. (11).

min
∑
i∈D

∑
j∈T

αi, j (11)

s.t. (5), (6), (7)

∑
j∈T

β j = M, (12)

αi, j ≥β jBi, j, ∀i ∈ D, j ∈T (13)

where constraint (12) ensures that the number of selected
clusters is exactly M and constraint (13) is to ensure that
if node i is covered by cluster j, cluster j must be selected
to form the final solution.

Through the above two-stage ILP model, the sets C and
CS can be obtained.

B. Segment Clustering Algorithm

To date, there have been extensive studies on clustering
algorithms involving K-Means++, BIRCH [16], DBSCAN
[17], etc. Nonetheless, these methods either cannot per-
form the UAV communication range-based clustering or
require high complexity. Motivated by this, a clustering
algorithm with low-complexity considering the UAV com-
munication range, namely segment clustering (SC), is
proposed in this section.

The scanning area is represented by a XY-plane. The
basic idea of SC is to split the scanning area into different
sized grids, where the maximum size is less than the
UAV communication coverage. The next step is to select
minimal grids from those with high node densities to cover
all IoT nodes and ensure the minimization of overlapping
areas. The selected grids become the candidates for de-
ploying clusters, and the center of each one becomes a
way-point where a UAV hovers at for data gathering.

The following pseudo-codes illustrate the process of the
proposed SC algorithm. The input parameters include the
long edge of a rectangle, the radius of UAV communication
coverage and the threshold on the cluster density, which
are represented by s, γ, and THd , respectively. It is
worth noting that assume the UAV communication pattern
is represented by a circle, the inscribed square of the
communication circle is the maximum area of a cell, and
thus s ≤p

2γ.
Figs. 2(b) and 2(c) show the first step of SC algorithm,

where it segments the given areas based on the IoT node
locations horizontally and then vertically. The details are
illustrated in Pseudocode 1. After horizontal and vertical
segment, there are rectangles with various sizes in Fig.
2(d). Each rectangle represents a grid cell and the set of
grid cells is denoted by Scell . The long edge of a grid should
be less than or equal to s. Then, Fig. 2(e) shows that some
grid cells are removed since their densities are lower than

Pseudocode 1: SC1.1-Segmentation and clustering
Input: D, s, γ, THd
Output: The set formed by the selected hovering locations, C

1 Function SectionGeneration(R, s) do
2 Generate a empty set for bounds of the sections on x-axis or

y-axis, B ←;;
3 Sort R in decreasing order.
4 rupper ← R.pop();
5 rlower ← rupper ;
6 while r is not empty do
7 r ← R.pop();
8 if rupper − r ≤ s then
9 rlower ← r

10 else
11 B ← B∪ {(rlower , rupper)} ;
12 rupper ← r ;
13 rlower ← r ;
14 end
15 end
16 return B;
17 end
18 Generate a empty set for selected hovering coordinates, C ←;;
19 Generate a empty set for candidate hovering coordinates, H ←;;
20 Generate a empty set for IoT clusters, CS ←;;
21 Label all IoT nodes in D as ungrouped ones, W ← D;
22 Step I (Cell segmentation & update):
23 Generate vertical and horizontal sections, i,e., Bv and Bh:

Bv ← SectionGeneration(Xnode , s);
Bh ← SectionGeneration(Ynode , s);

24 Generate cells based on sections. Bcell ← Bv ×Bh;
25 for each cell k ∈ Scell do
26 Calculate the density of cell k, qk as the number of IoT

nodes within it;
27 if qk == 0 then
28 Scell ← Scell − {k};
29 end
30 end
31 for each cell k ∈ Scell do
32 if qk ≥ THd then
33 H ← H∪{the 2D center coordinate of the cell k};
34 end
35 end
36 Step II (Clustering based on cells):
37 repeat
38 h∗ ← argmaxhk∈H

∣∣{di : di ∈W , ||di −hk || ≤ γ
}∣∣;

39 if
∣∣{di : di ∈W , ||di −h∗|| ≤ γ

}∣∣== 0 then
40 Break;
41 end
42 H ← H− {h∗};
43 C ← C∪ {h∗};
44 W ←W −{

di : di ∈W , ||di −h∗|| ≤ γ
}
;

45 CS ← CS∪{
Tl =

{
di : di ∈ D, ||di −h∗|| ≤ γ

}}
;

46 until U ==; ∨H == ;;
47 while W ̸= ; do
48 d∗ ← argmaxd j∈U

∣∣{di : di ∈U , ||di −d j || ≤ γ
}∣∣;

49 C ← C∪ {d∗};
50 W ←W −{

di : di ∈W , ||di ,d∗|| ≤ γ2}
;

51 CS ← CS∪{
Tl =

{
di : di ∈ D, ||di −d∗|| ≤ γ

}}
;

52 end

the threshold THd . Next, in Figs. 2(f), the remaining grid
cells are replaced with circles, and each circle represents a
cluster. Fig. 2(g) shows that, for the IoT nodes covered by
the eliminated cells, some of them are reassigned to one of
remaining clusters, and the others form a new cluster. The
process repeats until each IoT node is covered by at least
one cluster. The set of the generated clusters is denoted
by CS while the center coordinates of those clusters form
the set C.

Pseudocode 2 illustrates the rest part of SC. Particularly,
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Pseudocode 2: SC1.2-Overlap minimization

1 repeat
2 P ← {

(ci, c j) : ||ci − c j|| ≤ γ,1≤ ∣∣Ti ∩T j
∣∣, ci, c j ∈

NC,Ti,T j ∈ CS
}
;

3 if P == ; then
4 Return C;
5 else
6 for each (ci, c j) in P do
7 DT ← Ti ∩T j;
8 if Ti ≤T j then
9 T j ← T j ∪DT;

10 Ti ← Ti −DT;
11 else
12 Ti ← Ti ∪DT;
13 T j ← T j −DT;
14 end
15 end
16 end
17 C ← C− {c j|T j =;, c j ∈ C,T j ∈ CS};
18 CS ← CS− {T j|T j =;,T j ∈ CS};
19 for each c j ∈ NC do
20 Update c j via equation (14);
21 Update T j via equation (1);
22 end
23 until the positions in C remain unchanged;

Fig. 2: The XY-plane segmentation

as shown in Fig. 2(h), this part is to implement the
minimization of the overlap areas caused by clusters. If
the distance two clusters is less than γ, then they can
be defined as the adjacent clusters. If there are any IoT
nodes covered by two adjacent clusters, SC will re-assign
those nodes to the one with higher density. After this, the
corresponding coordinates in C, ck ∈ C are updated by the
the following equation:

ck = (
∑

di∈Tk DX i

|Tk|
,
∑

di∈Tk DYi

|Tk|
) (14)

where |Tk| stands for the number of IoT nodes belonging to
the cluster with coordinate ck. The equation (1) is adopted
to update the corresponding cluster. The repetition of this
process is halted when there is no change to the clusters
after updating.

Fig. 3: Shift results for different sort configurations

C. Shifted Segment Clustering Algorithm

Since the SC algorithm determines the location of a
hovering point based on the arithmetic mean of IoT node
coordinates of a cluster, the IoT nodes are less likely to
locate at the boundary of clusters. Hence, we can further
reduce the overlapping region among clusters by shifting
the hovering points until at least one IoT node locates
at the boundary of a cluster. Regarding this, we propose
a variant of SC based on iterative shift, namely Shifted
Segment Clustering (SSC) algorithm.

The initial steps of SSC are the same as SC. It first
segments the XY-plane to create a set of centers for
clusters containing at least one IoT node, denoted by H, as
shown in Pseudocode 1. Next, clusters with their centers
in H are assigned a radius no larger than γ, limited by
the UAV communication coverage. The additional steps of
SSC, compared to SC, lie in that it sorts the centers in
H and then iteratively shifts the centers to reduce the
overlapping area and the possible redundant clusters.

Specifically, SSC first sorts the cluster centers based
on their X-axis first and then the Y-axis (or Y-axis first
and then X-axis) in the ascending or descending orders
and then number the centers as shown in Fig. 3. The
numbering sequence decides the shifting order of clusters,
and a smaller number indicates a higher shifting priority.
Note that based on whether X-axis or Y-axis is sorted first
and the sorting order, the numbering may be different
even for the same clusters as shown in Figs. 3(a) and 3(b),
which would affect the shifting results.

Then SSC shifts the cluster centers following the num-
bering obtained after sorting. For a specific cluster, SSC
tries to shift its center vertically and horizontally, aiming
to detach it with the other clusters while including as
many IoT nodes in it as possible until at least one of its
original IoT node sites on its region boundary. By doing
this, the overlap among clusters can be minimized and
the cluster density can be maximized. Besides, the shifting
process complies with the following rules. First, a cluster
shifted previously can cover the IoT nodes of a cluster
shifted later, but the inverse is not true. Therefore, the IoT
nodes in a cluster being shifted may alter with each move-
ment. Second, the IoT nodes currently in a cluster midst
a shifting process should still be in the same cluster but
possibly at the cluster boundary. Third, if a cluster does
not cover any node due to its IoT nodes being re-grouped
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Pseudocode 3: SCC1.1-Shifting and clustering
Input: D, s, γ, THd , OP
Output: The set formed by the selected hovering

locations, C
1 Perform the same process from line 1 to line 35 in

Pseudocode 1;
2 Step II (Shifting clustering):
3 minoverlap ← a large integer number;
4 for each sort option OPsort in OP do
5 for each shift option OPshi f t in OP do
6 Hnew ← H.sort(OPsort);
7 W ← D;
8 CSnew ←;;
9 for each h in Hnew do

10 W ← {di : ||di −h|| ≤ γ,di ∈U};
11 if W is empty OR T is empty then
12 Hnew ← Hnew − p;
13 else
14 shift h by following the option

OPshi f t and the shift length is
calculated by Eq.(15);

15 W ← {di : ||di −h|| ≤ γ,di ∈U};
16 CS ← CS∪ {T};
17 W ←W −T ;
18 end
19 end
20 Noverlap ←∑

h∈Hnew |{di : ||di −h|| ≤ γ,di ∈
D}|− |D|;

21 if Noverlap ≤ minoverlap then
22 minoverlap ← Noverlap;
23 CS ← CSnew;
24 C ← Hnew;
25 end
26 end
27 end

to previously shifted clusters, this cluster is removed. We
can see that after shifting, the cluster numbered three is
eliminated, and all clusters are detached with no overlap,
as shown in Figs. 3(a) and 3(b), respectively.

We define the shift length of a center as the minimum
value of the distances between the IoT nodes in a cluster
and the cluster region boundary, denoted by ∆Lh j ,

∆Lh j = min
i∈IN j

∆l i j, ∀h j ∈ H (15)

where ∆l i j refers to the distance between IoT node i in
the cluster with center h j and the corresponding region
boundary. The value of ∆l i j varies with the shifting direc-
tions and can be formulated as follows,

∆l i j =


√
(γ)2 − (∆xi j)2 +b∆yi j, if h j ∈ H shifts vertically√
(γ)2 − (∆yi j)2 +b∆xi j, otherwise

(16)

Fig. 4: The calculation of ∆hi and the translation of a
centre.

where ∆xi j and ∆yi j are the absolute values of horizontal
and vertical difference between IoT node i and its cluster
center h j, respectively; b is a coefficient varying with the
shifting directions, which is one if the shifting direction is
towards IoT node i; -1 otherwise, as illustrated by Fig. 4.
Fig. 4 also describes the expected shifting results in case
that there is only one IoT node covered by the cluster with
center h j, implying ∆Lh j =∆l i.

IV. NUMERICAL ANALYSIS

This section evaluates the performance of the proposed
methods, saying SC, SSC, and ILP model and compares
them with their counterparts, i.e., the approximation
algorithm for UMP [10], TS, and TCE [14]. The UMP
algorithm can achieve the minimization of the overlap
areas but suffers from a considerable time complexity
due to identifying many hovering candidates with each
corresponding to a cluster with high density. TS and TCE
first segment the XY-plane by tiling polygonal of the same
size to roughly determine the hovering points and then
reduce the number of hovering points through different
techniques. However, the empirical tests show that using
tiles of the same size leads to longer path lengths than
using cells of various sizes.

A. Simulation Configuration

TABLE I: Simulation configuration for a UAV

Parameters Values
Reception range 0∼100 meter

Weight 1375g [18]

Energy capacity 321,206 J (for one battery) [18]

ρtravel 22.9 J/m (at 5.56 m/s) [19]

ρhover 1.852 J/Mbit (at 103.2 Mbps)

ρchange 50 J/status change

Here, Fig. 5 shows five different IoT nodes deployment
scenarios, saying "uniform," "corner," "blobs," "ring," and
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(a) uniform (b) blobs (c) corner (d) ring (e) uniform rings

Fig. 5: Five topology scenarios for the distribution of IoT nodes over the area with the size of 1000×1000 m2

"uniform ring," respectively, which are considered for the
feasibility estimation of the proposed algorithms. In each
scenario, there are 1000 IoT nodes deployed over a XY-
plane with the size of 1000 × 1000 m2. The data rate
of all IoT nodes is fixed at 103.2 Mbps. There are two
configurations for the data sizes from IoT sensor nodes: 5
Mbits and 50 Mbits. The configuration of the drone model
using DJI Phantom 4 Pro [18] is shown in Table I.

We implement The ILP models through LINGO. The
proposed clustering algorithms, i.e., SC and SSC, and their
counterparts, i.e., UMP, TS, and TCE, are implemented
via Python 3.6. To solve the next TSP issue, which aims
to contribute a closed path with the shortest length for a
set of hovering locations/clusters obtained in the previous
clustering step, we equally use the existing vehicle routing
solver of Google OR Tools (ORT) [11] for all the clustering
algorithms, i.e., SC, SSC, UMP, TS, and TCM.

B. Evaluation Metrics

To investigate the proposed algorithms, we first compare
them with other counterparts based on criteria such as the
number of clusters, repeated data ratio, and path length.
The latter is considered the main factor impacting energy
consumption. Next, to evaluate and compare the power
consumption of the proposed algorithms, we define a met-
ric as the relative difference between E(SSC)

total and E(z)
total ,

where E(SSC)
total is the energy required by SCC algorithm

and E(z)
total can be the total energy consumption for any

algorithm except SSC (i.e. z can be UMP, SC, TS and TCE).
The calculation formula of relative difference is as follows

δz,SSC =
E(z)

total −E(SSC)
total

E(SSC)
total

∗100% (17)

where δz,SSC refers to the relative difference between the
energy consumption of SSC and the algorithm z. This
metric converts values measured on different scales to a
notionally common scale. Notably, if the energy consump-
tion of SCC is less than that of the algorithm z, then δ > 0;
Otherwise, the δ≤ 0. The degree of difference is reflected
by the value of |δ|.

Furthermore, we analysis the main components of en-
ergy consumption, i.e., hovering, flying, and UAV state
changes given by the equations (4), (5), and (6), respec-
tively, under different data size configuration, namely 1
Mbits, 50 Mbits and 500 Mbits.

C. Numerical Result

Fig. 6: Number of clusters

Fig. 7: Repeated data ratio

Table II illustrates the time complexities of the clus-
tering algorithms in terms of their execution time. It can
be observed that except for the optimization ILP model,
which requires high execution time as expected to find
the optimal solution, the proposed SC is the most time-
efficient since it requires the least execution time, followed
by TCE, TS, SSC, and UMP. Even though the proposed
SSC requires slightly more execution time than TS and
TCE, they are still in the same magnitude. In comparison,
the time complexity of UMP is almost five orders higher
than other methods due to the iterative process needed in
UMP to adjust the threshold for clusters, which is time-
consuming.
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TABLE II: Elapsed time for different clustering methods in unit of second.

ILP SC SSC UMP TCE TS
uniform 3000s 0.078125 0.9375 3000s + 154.20 0.171875 0.546875

blobs 86 0.046875 0.953125 3000s + 252.89 0.125 0.375
ring 42.22 0.0625 0.90625 3000s + 110.28 0.125 0.46875

uniform rings 42.16 0.03125 0.890625 3000s + 139.80 0.125 0.4375
corner 41.88 0.046 0.875 3000s + 245.75 0.125 0.421875

*3000s:The time cost of finding the optimal solution by the solver exceeds 3000s for ever instance.
*t1 + t2:For UMP, the sum of the execution time of M set generation process, t1 and that of
IoT node clustering process, t1.

Fig. 8: Trajectory path length of different clustering tech-
niques

Figs. 6 and 7 show the performance of different methods
in terms of required clusters and data repetition ratios
across five topology scenarios. The ILP model performs the
best due to its exact nature. Thus, the performance of an
algorithm close to the ILP model indicates its efficiency.
The proposed SSC algorithm excels in the ring and corner
scenarios, requiring the fewest clusters, and is the second-
best in other scenarios, where TS performs the best. This
is because decentralized and dense node deployment in
certain scenarios allows SSC to achieve efficient clustering
via minimal cells, further improved by the shift process.
TCE collects the least repeated data in most scenarios,
except for the ring scenario, where SSC performs the
best, as seen in Fig. 7. Compared to SC, SSC significantly
reduces data repetition ratios, including the shift process.

Fig. 8 shows simulation results for trajectory path
lengths, determined by ORTool for hovering locations de-
rived from grouped clusters. SC performs best in the ring
and uniform rings scenarios, while UMP is superior in the
other scenarios. However, UMP comes with significantly
higher time complexity, as mentioned earlier. Notably, for
the ring scenario, SC performs almost as well as the ILP
optimization model. The shift process in SSC, aimed at
eliminating overlaps, may lead to longer tour lengths.

The energy consumption performance was evaluated for
different data size configurations (1 Mbits to 500 Mbits)
across five scenarios (see Figs. 9a to 9e). Fig. 10 illustrates
energy consumption due to hovering, flying, and state
changes for data sizes of 5 Mbits, 50 Mbits, and 500 Mbits
per IoT node. Overall, SSC has the lowest energy consump-

tion in most scenarios (except blobs and corners) for data
sizes between 50 Mbits and 400 Mbits. It’s worth noting
that SSC is the optimal choice for data sizes between 50
Mbits and 100 Mbits in most scenarios (except blobs). For
scenarios with small data sizes, UAV energy consumption
is mainly due to cruising, while hovering becomes the
dominant factor as data sizes increase. In blobs scenario
with large data sizes, TCE and TS outperform SSC in
terms of the repeated data ratio while UMP wins in terms
of path length for corner scenario with small data sizes.
The impact of state changes on total energy consumption is
negligible compared to other factors. Despite limitations in
certain scenarios, SSC’s performance in uniform scenario
makes it a practical choice considering the prevalence of
uniform scenario in the real world.

V. CONCLUSION

This paper proposed two-stages ILP model as well as a
novel segment clustering (SC) algorithm and its variant
shifted segment clustering (SSC) algorithm to address
the clustering issue for UAV trajectory. The objective of
both two techniques is the overlapping ratio minimization.
Notably, compared to the existing clustering algorithms
such as UMP, TCE, and TS, SC can take required sig-
nificantly less time complexity while SSC can provide a
better trade-off between the overlap and path length. The
simulation results showed that ILP model performs the
best. It also showed the high compatibility of SSC in
various situations, since it outperforms its counterparts
in most of the topology scenarios. Although effective, the
proposed SSC might lead to a longer path length, which
will be discuss in future work.
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