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The non-standard machinery refers to customized machinery produced to meet specific customer demands. The mainstream
research direction in data stream anomaly detection focuses on deep learning, which involves learning data distribution through a
large amount of training data. However, non-standard machinery equipment has the characteristics of a small production scale and
sparse samples, making it difficult to obtain sufficient annotated training sets. This inadequacy in training data results in the model
not learning enough, thereby rendering it unable to effectively detect abnormal events. In this paper, we propose a semi-supervised
learning (SSL) based anomaly detection method. We employ a hybrid C-LSTM network based on the self-attention mechanism as
an abnormality prediction model, where the convolutional neural network (CNN) and long short-term memory network (LSTM)
extract spatiotemporal features of industrial data streams. The self-attention mechanism calculates the relationship weights between
different positions in the input data, capturing long-term dependencies in time series data to fully learn data distribution. To improve
the training effectiveness of the prediction model, we use an updating algorithm based on weighted fuzzy rough set (WFDA) to
update the prediction model in a reverse manner. This algorithm can classify data streams in real-time, compare the classification
results of the prediction model, and retrain unreliable data. The experimental results show that our proposed method achieves an
F1 score of 0.955 and a recall value of 0.957 on a real-world data set, which is a 4.1% improvement in F1 score and a 6.4%
improvement in recall compared to similar anomaly detection algorithms that do not use our proposed method.

Index Terms—Non-standard achinery anomaly detection, Semi-supervised learning, Fuzzy-rough-set, CNN, LSTM

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIOT) refers to the ap-
plication of IoT technology in the industrial field. Non-

standard machinery production is a specific scenario under
IIOT, which provides enterprises with a comprehensive method
of monitoring the production process [1], optimizing resource
allocation, and reducing costs by covering various customized
machinery equipment, sensors, and computer systems.

With the vigorous development of China’s manufacturing
industry, various industrial sensors are widely used in non-
standard mechanical equipment, including non-standard envi-
ronmental monitoring equipment [2], customized CNC (Com-
puterized Numerical Control) machine tools [3], and industrial
production workshops [4], [5]. How to ensure the safety and
stability of industrial production is the focus of research.
Anomaly detection of industrial equipment is an effective
solution, effective anomaly data detection technology is of
great significance for ensuring the reliability of non-standard
mechanical production processes and decision-making support
for management departments.

The goal of our work is to provide practical solutions to
the production process of non-standard mechanical equipment.
Concretely, there is a need for an anomaly detection method
that can operate with high real-time performance and low
false positive rate in non-standard mechanical production
environments, to meet the practical requirements of industrial
production.
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The challenges of our study are two-fold: Firstly, In the
production process of non-standard machinery, there are nu-
merous environmental noises such as electromagnetic interfer-
ence, machine vibration, temperature, humidity changes, etc.
Secondly, the difficulty in obtaining a large amount of pre-
labeled data for certain non-standard mechanical equipment is
another challenge. The combination of deep learning models
and time series data for anomaly detection has been a hot
research topic. However, common methods require a large
amount of pre-training for deep learning models to learn
the distribution characteristics of the data. In summary, the
contributions in this paper are:

• We propose a model update algorithm based on WFDA
(Weighted Fuzzy-Rough Density Algorithm), an anomaly
detection algorithm suitable for non-standard mechanical
production environments, with good noise resistance and
anomaly detection performance.

• We propose a semi-supervised anomaly detection method
that employs a hybrid C-LSTM network based on a self-
attention mechanism as the anomaly prediction model,
and combines it with the WFDA-based update algorithm
to reverse-update the prediction model. This method can
process data streams in real-time for data classification,
compare the classification results of the prediction model,
and retrain untrustworthy data.

The remainder of this paper is organized as follows. Section II
presents the related work. Section III gives a brief introduction
to C-LSTM and fuzzy rough set theory and a description
of the System Architecture and Module Design. In Section
IV, We conducted an experimental implementation of the



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 2, AUGUST 2023 82

proposed methodology and performed a theoretical analysis
of the experimental results. Finally, the paper is concluded in
Section V.

II. RELATED WORKS

This section categorizes and summarizes the relevant tech-
niques in anomaly detection, and analyzes their advantages
and disadvantages.

There has been a flurry of recent works in the area of
abnormal detection. Generally, the current research in the field
is mainly focused on predictive-based anomaly detection algo-
rithms, which are capable of discovering abnormal samples in
a dataset that do not conform to expected behavior, by forecast-
ing possible anomalies based on historical data. This approach
has wide-ranging applications in fields such as financial risk
prediction, medical diagnosis, and industrial equipment fail-
ure. The commonly used predictive-based anomaly detection
methods are based on machine learning models, which aim to
learn the feature distribution of normal data from the dataset
and use these features to detect anomalous points. Various
machine learning algorithms, such as Support Vector Machine
(SVM) [6] and Random Forests [7], can be employed in this
approach. Suleman Shahzad used a unique sequential deep
learning method based on SVM to detect anomalies in sperm
samples [8], while Qingyang Zhang achieved good results
in detecting financial data anomalies by introducing Random
Forests algorithm [9].

With the development of deep learning, some researchers
have used deep neural networks to model data and adaptively
learn the structure of the data in order to detect anomalies
in new data. The core idea of these methods is to extract
high-level features from the data by multiple layers of non-
linear transformations, capturing the distribution of the data.
For example, HOPFIELD J J first proposed recurrent neural
networks (RNN) [10], which consist of a large number of
equivalent components, i.e., neurons, to form a physical system
with interactions, achieving significant progress in time series
prediction and causing a huge sensation in related fields, but
ignoring the long-term dependence between time series data.
HOCHREITER S and SCHMIDHUBER J. proposed long
short-term memory (LSTM) [11], [12], an improved model
to solve the problems of gradient vanishing and exploding in
RNN for long sequence data. LSTM, as an improved model
of RNN, has the advantages of strong long-term memory
capability, flexible model structure, fast training speed, and
wide application. Furkan Elmaz et al. combined convolu-
tional neural networks (CNN) and LSTM to extract complex
features, using the CNN layer to extract spatial features in
time series data, and further using LSTM to extract temporal
features, effectively predicting indoor temperature. Zhuqing
Wang et al. effectively predicted the remaining useful life
(RUL) of lithium-ion batteries using LSTM based on adaptive
self-attention mechanism [13].

Currently, cutting-edge deep learning-based anomaly pre-
diction algorithms require a large amount of pre-training data
sets, which can be difficult to obtain in industrial Internet of
Things (IoT) settings where it may be challenging to acquire

large amounts of pre-labeled data and where the labels may not
be accurate enough to extract sufficiently accurate and infor-
mative features. To reduce dependence on annotated training
sets, scholars have conducted extensive research on this issue.
Aldo Glielmo and others proposed an unsupervised learning
method for molecular simulation data [14] that enables online
learning without the need for a pre-training set. However,
unsupervised learning still faces challenges in eliminating the
impact of complex noise. Vikas Verma and others proposed a
semi-supervised method [15] using interpolation consistency
training that can effectively train deep neural network models
and achieve excellent performance in classification problems,
but the method’s effectiveness in extracting spatial features
of high-dimensional data is limited. This article focuses on
anomaly detection technology and proposes a semi-supervised
anomaly detection solution based on fuzzy rough granularity
and a hybrid C-LSTM neural network (HFC-LSTM) that com-
bines a mixed C-LSTM neural network with a self-attention
mechanism and the WFDA anomaly detection algorithm based
on fuzzy rough granularity. This approach allows for real-
time online learning of the spatiotemporal features of new
anomalous data with a small training set, further improving
the accuracy of anomaly identification. The proposed solution
is well-suited to industrial IoT environments and has been
demonstrated in multiple industrial IoT scenarios with good
detection results. This research provides an effective solution
for anomaly detection in non-standard mechanical industrial
production environments and has practical application value.

III. SEMI-SUPERVISED HYBRID NETWORK

In this section, we first propose a semi-supervised anomaly
detection method (HFC-LSTM) based on a hybrid C-LSTM
network and the WFDA algorithm. Then, we use a hybrid C-
LSTM model with a self-attention mechanism as the prediction
model and design a model update algorithm based on the
fuzzy rough set theory of the WFDA algorithm proposed in
the previous chapter. The algorithm updates the prediction
model via backpropagation to learn new anomalies and further
improve the detection success rate.

A. System Model Design
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Fig. 1. Semi-supervised hybrid network framework design diagram

According to Fig. 1, the proposed semi-supervised anomaly
detection model architecture in this chapter is mainly divided
into two modules. The first module is the HC-LSTM (Hybrid
Convolutional LSTM) pre-training module, which mainly per-
forms pre-training on labeled time-series data streams. The
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pre-training model includes a fuzzy roughening module and
a C-LSTM model based on a self-attention mechanism. The
second module is the prediction model updating algorithm
based on weighted rough-fuzzy density anomaly detection
(WFDA), which mainly functions to update the pre-training
model network in the semi-supervised process.

B. Hybrid C-LSTM Model
The C-LSTM model is a deep learning neural network that

combines convolutional neural networks and long short-term
memory networks and is used for sequence classification. The
model adopts a multi-layer feedforward network structure,
which can effectively extract high-dimensional data features.
Specifically, the model first uses a convolutional neural net-
work to extract high-dimensional features of the input data and
uses pooling operations to obtain the most significant features
of the convolutional layer output as the input to the LSTM
network. The LSTM network further extracts temporal features
and performs further feature extraction and transformation on
the input data through a fully connected layer. Finally, the
model uses the Softmax classifier function to classify the input
data, predict its result, and compare it with the true value to
determine whether it is abnormal.

In order to filter out low-weight features and enhance the
model’s focus on key information in the input sequence, a
self-attention mechanism is introduced. In addition, a fuzzy
rough set processing module is further added to classify the
input data features, as shown in Fig. 2.
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Fig. 2. Hybrid C-LSTM model diagram

C. Fuzzy-Rough Calculation
The fuzzy roughness calculation module aims to select the

most discriminative subset of features from the original feature
set. The rough fuzzy degree of a feature is an indicator used
in fuzzy rough set theory to describe its discriminative ability,
we first set time series data series X = (x1, x2, · · · , xT ),
where xt ∈ Rn represents the n-dimensional data vector at
time t, and the specific steps are as follows:

1) Fuzzification
Fuzzification is the process of transforming a data vector

xt into a fuzzy set At, where At represents the degree of
membership of xt on each attribute. For each attribute i, its
membership function isµxi,t

(x), which represents the degree
of membership of x on attribute i. The sigmoid function is
used as the membership function to fuzzify the data vector xt

into a fuzzy set At, which represents the degree of membership
of xt on attribute i.

At(xi) = µxi,t
(xi) (1)

2) Roughification
Roughification refers to the process of transforming each

fuzzy set At at every time step into an equivalence class Et,
where Et represents the equivalence class partition of xt based
on each attribute. For each attribute i, its equivalence Ri is
defined to indicate whether two data vectors xt1 and xt2 are
equal on attribute i. Ri(xt1) = Ri(xt2) if and only if xi,t1 =
xi,t2 . Therefore, the fuzzy set At can be roughified into an
equivalence class Et, where Et(xi) = xi,t′ ,xi,t′ has the same
value as xi,t on all attributes.

Et (xi) = {xi,t′ | R1 (xt′ , xt) ∧R2 (xt′ , xt) ∧ · · · ∧Rn (xt′ , xt)}
(2)

3) Feature Extraction
Feature extraction refers to the process of computing a

fuzzy feature vector, denoted as ft, for each equivalence class
Et. Each dimension of the fuzzy feature vector ft represents
the fuzzy mean value of the corresponding attribute for the
equivalence class Et. For each attribute i, the fuzzy mean
value Āt(xi) is computed for the equivalence class Et, which
represents the average membership degree of Et on attribute
i.

Āt (xi) =

∑
xi,t′∈Et

At (xi,t′)

|Et (xi)|
(3)

Secondly, the fuzzy mean values on all attributes can be as-
sembled into a fuzzy feature vector ft, where ft(xi) = Āt(xi),
representing the fuzzy feature vector of the equivalence class
Et.

ft (xi) = Āt (xi) (4)

Finally, the obtained fuzzy feature vector sequence f =
(f1, f2, · · · , fT ) is used as the input for the C-LSTM network
to perform downstream task training and prediction.

D. Update algorithm based on WFDA model

In this section, we propose an anomaly detection algorithm
based on a fuzzy rough granulation model. The algorithm
addresses the challenge faced by the semi-supervised model
proposed in this paper, which struggles to identify novel
anomalies with limited training data and achieves low detec-
tion rates. By iteratively updating the pre-trained model in
a reverse manner, the algorithm improves the accuracy and
precision of the semi-supervised approach.

Based on literature [16], the algorithm process is shown in
the algorithm 1:

In the model update algorithm, firstly, the non-empty finite
set of data attributes A is initialized. Then, a loop is performed
for each attribute to calculate the fuzzy granularity structure
and fuzzy entropy, which determines the influence of each
attribute on anomalies. Next, a loop is conducted for each data
object to calculate its fuzzy rough density and corresponding
weight value. Subsequently, the ratio between local density and
global density is computed, followed by the calculation of the
anomaly score for each object. Through analysis, the number
of iterations in the algorithm is given by |A||O||O|+ |O||A|.
Therefore, in the worst-case scenario, the time complexity of
the algorithm is O(|A||O|2).
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Algorithm 1 Model Update Algorithm
Input: sample set: D = {O,A}, parameter : δ
Output: abnormal score : AS

1: procedure GETSCORE(a, o)
2: for a ∈ A do
3: STR (Ra) = {[o1]a , [o2]A , [o3]A , . . . , [on]a} ;
4: FE(a) = − 1

|O|
∑

o∈O log 2 |[o]a|
|O| ;

5: end for
6: for o ∈ O do
7: for a ∈ A do
8: FRDa(o) =

∑
a∈A Densitya(o)

|A| ;

9: W (a) = FE(a)∑|A|
i=1(FE(ai))

∈ [0, 1];

10: end for
11: AS(o) =

∑
a∈A W (a) (1− FRDa(o)) ;

12: end for
13: return AS;
14: end procedure

E. Semi-Supervised Scheme Detailed Design

The overall design of the scheme consists of two modules,
namely the hybrid C-LSTM module and the WFDA-based
model update algorithm. The main process is illustrated in
Fig.3.
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Fig. 3. Schematic diagram of the semi-supervised scheme

1) Pre-training process
The process of fuzzy roughening described above re-

sults in a sequence of fuzzy rough feature vectors f =
(f1, f2, · · · , fT ) for the dataset X , which serve as inputs to
the convolutional neural network (CNN). The CNN performs
convolution and pooling operations to further extract impor-

tant spatial features of the time series data. The long-term
dependent time features are then extracted using the LSTM.
The proposed hybrid C-LSTM network structure includes
two convolutional layers, two max-pooling layers, two shared
LSTM networks, and a fully connected layer with the tanh
function as the activation function.

The main steps of the process include:
(1) Label the time-series data stream, the input time window

length l is determined by a sliding window based on time
intervals. The input data consists of a feature vector sequence
from an industrial sensor data stream, with each data point
containing four attributes. The data is distributed to a CNN
network as input, with a convolutional kernel size of 3,
convolution stride of 1, and no padding used for input data.

(2) Use a convolutional neural network to extract high-
dimensional features as input to a long short-term memory
(LSTM) network. Max-pooling is used to compress the num-
ber of features, with a pooling kernel size of 2 and a pooling
stride of 2. The output of the last pooling layer of the CNN
network is used as input to the LSTM network.

(3) The LSTM network takes the high-dimensional features
extracted in step (2) as input and continues to extract their
temporal features. The tanh function is used as the activation
function for the hybrid C-LSTM network. The tanh function
maps a real number to the range of [-1,1], with an output of 0
when the input is 0. The tanh function is sensitive to changes
in the middle region and can effectively suppress both ends,
which is very beneficial for classification tasks.

(4) In this paper, the tanh function is used as the activation
function, which can effectively capture the subtle changes in
the sensor data stream after anomalies occur. Additionally, it
can compress the network output data into the range of [-1,1],
ensuring that data does not spread or exceed limits between
layers of the convolutional neural network, accelerating net-
work fitting and increasing network robustness.

tanhx =
ex − e−x

ex + e−x
(5)

After compressing the data using fully connected layers, it
is passed through the Softmax function for anomaly detection.
Steps (1) to (4) are repeated until all training data is processed.

2) Semi-Supervised Process
This section introduces the semi-supervised real-time detec-

tion module. The semi-supervised module mainly deals with
unlabeled time-series data streams, and the semi-supervised
process is as follows:

(1) The unlabeled time-series data stream is used as input
to the pre-trained model, which predicts the input time-series
data and classifies the processed data into labels denoted as
Yhclstm. At the same time, the real-time online anomaly judg-
ment is performed by the fuzzy-rough density-based anomaly
detection module, and the data is labeled as Ywfda.

(2) The trustworthy data is labeled by combining the HC-
LSTM model and the WFDA algorithm, which have the same
classification results in labels Yhclstm and Ywfda. Unreliable
data with different classification results are further classified
using the WFDA-based model update algorithm.
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(3) The classification results from step (2) are re-input
into the pre-trained convolutional layer to extract features,
and the results are used as input to the LSTM network. The
LSTM network parameters are updated continuously through
backpropagation until the output of the LSTM network, passed
through the fully connected layer and Softmax classifier func-
tion, produces a classification result with an error smaller than
the classification error threshold g of the original labeled data.
At this point, the anomaly detection model has successfully
learned the new data distribution and the iteration ends. If the
iteration exceeds 25 times, the iteration ends, indicating that
the anomaly detection model has failed to learn the new data
distribution.

The classification error threshold g is defined as follows:

g =
∑
i=0

|Yhclstm(i)− Ywfda(i)| (6)

The LSTM backpropagation process is illustrated in Fig. 4.

Backpropagation direction of lstm

Forward propagation direction of lstm

Fig. 4. LSTM schematic diagram of backpropagation

IV. EXPERIMENTAL EVALUATION

A. Dataset Acquisition And Preprocessing

To validate the feasibility of the semi-supervised model,
an actual sensor dataset was used from the Jinlu-Equipment-
Health-Management-Platform. The experimental data was col-
lected from indoor driving of multiple sensors on industrial
machinery equipment from January 2023 to February 2023
by Henan Jinlu Network Technology Co., Ltd. Each data
set includes four attributes: current, voltage, temperature, and
pressure, and is unlabeled raw acquisition data with missing
and abnormal values, requiring preprocessing before experi-
mentation. The processing steps were as follows:

(1) Selecting 80,000 sets of data from the dataset as experi-
mental data, using linear interpolation to fill in missing values
for normal data of current, voltage, temperature, and pressure.
The first 80,000 sets of data after preprocessing were taken
as the experimental dataset and the preprocessed data were
labeled as normal data.

(2) In the experimental dataset, randomly selecting some
normal points and changing their four attribute values to ab-
normal values, and inserting 1%, 3%, 5%, and 10% abnormal
points into the dataset respectively, obtaining four labeled
datasets with abnormal percentages of 1%, 3%, 5%, and 10%.
The experimental dataset is shown in Table I.

TABLE I
EXPERIMENTAL DATASET

Num Dataset Training Test Abnormal Ratio/%

I JL 2023 5000 75000 1
II JL 2023 5000 75000 3
III JL 2023 5000 75000 5
IV JL 2023 5000 75000 10

B. Evaluation Indexes

The anomaly detection model proposed in this section
outputs detection results as a binary classification problem,
with the classification results divided into the normal set P
and the anomaly set N. As a binary classification problem, the
classification results are generally divided into four categories
according to the prediction situation [17], [18], as follows:

True Positive (TP): the positive samples correctly predicted
by the model as positive;

False Positive (FP): the negative samples incorrectly pre-
dicted by the model as positive;

True Negative (TN): the negative samples correctly pre-
dicted by the model as negative;

False Negative (FN): the positive samples incorrectly pre-
dicted by the model as negative.

To further evaluate the performance of the model,
Precision, Recall, and F1score are used as evaluation metrics
for algorithm performance. Precision refers to the percentage
of predicted positive samples that are actually positive.

Precission, the term precision refers to the percentage of
predicted positive samples that are actually positive, calculated
as the number of true positives divided by the total number of
positive predictions;

Precission =
TP

(TP + FP )
(7)

Recall, the recall rate refers to the probability of samples
predicted as positive among the actual positive samples in the
original dataset;

Recall =
TP

(TP + FN)
(8)

F1score , the F1score is a metric that simultaneously con-
siders precision and recall, achieving a balance between the
two measures by finding their optimal trade-off point. It is
calculated as the harmonic mean of precision and recall, and
is commonly visualized on a precision-recall (P-R) curve;

F1score =
2× Recall × Precission

Recall + Precission
(9)

C. Experimental results

To validate the effectiveness of the proposed anomaly
detection algorithm in this chapter, the JL2023 dataset, which
contains real-world industrial production data, was used as the
experimental input.

Multiple experiments were conducted to demonstrate the
effectiveness of the proposed semi-supervised model. Specif-
ically, the experimental results of six models were compared,
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including HC-LSTM, C-LSTM, LSTM, HC-LSTM with semi-
supervised architecture (HFC-LSTM), C-LSTM with semi-
supervised architecture (FC-LSTM), and LSTM with semi-
supervised architecture (FLSTM).

First, 5000 pre-training iterations were performed for each
of the six models using the data samples labeled I, II, III, and
IV. Then, the three semi-supervised models were trained online
with an additional 75,000 data samples, while the other three
models performed real-time anomaly detection and recorded
the results. The experimental comparison of the six models
on different datasets with different anomaly points is shown
in Fig. 5 and Fig. 6.
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Fig. 5. Comparison of F1score among different algorithm models
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Fig. 6. Comparison of Recall among different algorithm models

The average scores of various algorithms on samples labeled
as I, II, III, and IV are shown in TableII:

Comparison results of different algorithms on datasets with
varying anomaly ratios are shown in Figures 4.5 and 4.6. The
use of the semi-supervised architectures in the three groups
of models, FLSTM vs. LSTM, FC-LSTM vs. C-LSTM, and
HFC-LSTM vs. HC-LSTM, resulted in significant improve-
ments in both the F1 score and recall compared to the control
groups of the original algorithms without semi-supervised
learning. The average improvements in F1 score and recall
compared to the three control groups were 12.2% and 9.3%,
10.3% and 11.5%, and 4.1% and 6.4%, respectively. These
results demonstrate the effectiveness of the semi-supervised
anomaly detection method proposed in this paper.

By comparing the results of HC-LSTM, C-LSTM, and
LSTM in Fig. 5 and Fig. 6, it was found that the use of HC-
LSTM resulted in significant improvements in both F1score
and recall. Specifically, the F1score of HC-LSTM improved
by 9.5% compared to C-LSTM and by 28.9% compared to
LSTM. Moreover, by comparing the results of HFC-LSTM,
FC-LSTM, and FLSTM, it can also be found that the use
of HFC-LSTM also resulted in significant improvements in
both F1score and recall. Specifically, the F1score of HFC-
LSTM improved by 3.5% compared to FC-LSTM and by
28.1% compared to FLSTM. These results demonstrate the
effectiveness of the proposed HFC-LSTM with a sub-attention
mechanism in extracting spatial features from the data.

The experiments on datasets with different numbers of
anomalies, as shown in Fig. 5 and Fig. 6 and Table II, indi-
cate that the proposed HFC-LSTM semi-supervised anomaly
detection method exhibits stable performance and robustness
across datasets with different anomaly ratios.

Furthermore, it was observed that the use of the semi-
supervised HC-LSTM and C-LSTM resulted in less improve-
ment in F1score and Recall compared to LSTM. This is be-
cause LSTM alone cannot effectively extract sufficient features
from the time series data, which makes pre-training difficult.
However, the further updated WFDA algorithm helped the
model fit more effectively with new data, greatly improving
the accuracy of the anomaly detection algorithm. On the other
hand, although HC-LSTM and C-LSTM can extract temporal
and spatial features, the limited pre-training data makes the
model only relatively fit and unable to accurately measure the
performance of the anomaly detection algorithm.

In order to further investigate whether the HFC-LSTM semi-
supervised model can maintain good performance compared
to other algorithms when the pre-training set is sufficient, we
gradually increased the proportion of the pre-training set in
stages, including 5%, 10%, 20%, and 30%. The experimental
results are shown in Fig. 7: Observing Figure 4.7, it can be
seen that as the proportion of the pre-training set increases,
HC-LSTM, C-LSTM, and LSTM all achieve varying degrees
of improvement in F1 score and recall.

Observing Fig. 7, it can be seen that as the proportion of
pre-training data increases, the scores of each algorithm show
significant improvements. The F1 scores and recall rates of
LSTM, C-LSTM, and HC-LSTM on 5% pre-training data are
0.638, 0.721, and 0.807, respectively. On 30% pre-training
data, the scores are 0.701, 0.831, and 0.873, respectively, with
improvements of 6.3%, 11%, and 5.8%. FLSTM, FC-LSTM,
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TABLE II
PERFORMANCE OF DIFFERENT ALGORITHMS ON DATASETS WITH DIFFERENT ANOMALY RATIOS

Algorithm 1%(Outlier) 3%(Outlier) 5%(Outlier) 10%(Outlier)
Recall F1score Recall F1score Recall F1score Recall F1score

LSTM 0.693 0.619 0.687 0.621 0.692 0.632 0.692 0.629
C-LSTM 0.811 0.816 0.812 0.817 0.814 0.825 0.813 0.826

HC-LSTM 0.909 0.884 0.917 0.889 0.916 0.896 0.916 0.899
FLSTM 0.771 0.763 0.783 0.744 0.793 0.741 0.792 0.739

FC-LSTM 0.927 0.925 0.923 0.926 0.923 0.922 0.923 0.924
HFC-LSTM 0.958 0.960 0.955 0.955 0.956 0.953 0.957 0.959
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Fig. 7. Scores of algorithms under different proportions of anomalous training
sets

and HFC-LSTM on 5% pre-training data are 0.801, 0.801, and
0.968, respectively. On 30% pre-training data, the scores are
0.825, 0.936, and 0.972, respectively, with improvements of
2.9%, 16.9%, and 0.4%. The experimental results demonstrate
that the performance of the models improves with the increase
of pre-training data, but it can be seen that the proposed
semi-supervised HFC-LSTM model still exhibits outstanding
superiority. And HFC-LSTM has good performance when the
pre-training ratio is low, which is more in line with the actual
production environment needs.

Experiments were conducted on different data samples (I, II,
III, IV) with varying percentages of abnormal values (1%, 3%,
5%, 10%) without preprocessing to test the noise resistance
of the semi-supervised anomaly detection scheme described
above. The experimental results are shown in Figure 8.

V. CONCLUSION & FUTURE WORK

In this paper, we propose a semi-supervised learning-
based anomaly detection method specifically designed for
non-standard mechanical production processes. The method
incorporates a hybrid C-LSTM pre-training model with a self-
attention mechanism and a model updating algorithm based on
WFDA. This approach addresses the challenges of acquiring
a large annotated dataset for training due to the characteristics
of small production scale and sparse samples in non-standard
mechanical equipment. To address the issue of insufficient
learning caused by a limited training set, we employ the
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(b) F1score on sample II
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(c) F1score on sample III
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Fig. 8. HFC-LSTM algorithm’s performance score with and without noise
environment

WFDA-based model updating algorithm for semi-supervised
learning. Compared to similar algorithms, our semi-supervised
approach achieves an F1score of 0.955 and a Recall of 0.957
on real-world datasets with varying proportions of anoma-
lies. This represents a 4.1% improvement in F1score and a
6.4% improvement in Recall compared to similar anomaly
detection algorithms that do not utilize our proposed method.
Furthermore, our approach requires only a small amount of
labeled training data, resulting in significant cost savings. It
demonstrates practical research value in the field.
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