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Abstract

To mitigate social, ecological, and financial damage, effective fire detection and
control are crucial. Performing real-time fire detection in Internet of Things (loT)
environments, however, presents significant challenges due to limited storage,
transmission, and computational resources. Early fire detection and automated response
are essential for addressing these challenges. In this paper, we introduce an
loT-supported deep learning model designed for efficient fire detection. The proposed
model builds upon the pre-trained weights of the ConvNext convolutional neural
network, which excels at detecting minute features and distinguishing between yellow
lights and fire patterns. Implemented on an loT device, the system triggers an alert
when a fire is detected, prompting necessary actions. Our method, tested on the forest
fire dataset, demonstrated a 4% improvement in accuracy compared to existing deep
learning models for fire detection.
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1. Introduction

The Internet of Things (I0T) has enhanced the interconnectivity of smart devices,
and their increased processing capabilities coupled with intelligent technologies
play a significant role in various applications, such as e-health, self-driving cars,
event surveillance, and law enforcement [1]. Numerous abnormal events, including
accidents, disasters, medical emergencies, floods, and fires, can occur during
periods of disorder. Obtaining early information about these events is crucial in
reducing the probability of major failures and managing rare occurrences promptly
with minimal damage. Effective management of natural disasters depends on key
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physical factors, including early detection, prevention, advance warning, and timely
notification to the public and relevant authorities.

According to the World Fire Statistics Report 2018, there were approximately
62,000 fatal building fires between 1993 and 2016, with 57 countries reporting
fire-related fatalities. South Korea's National Fire Data System (NFDS) reported
24,539 structural fires between September 2020 and September 2021, resulting in
250 deaths, 1,646 injuries, and $705,960 in direct property damage. Additionally,
South Korea experienced 78,219 vehicle fires during the same period, causing 461
fatalities, 1,875 injuries, and $357,609 in property damage. Wildfires, in
comparison to building and vehicle fires, are the most devastating natural disasters
that affect the environment's life cycle. Various factors can trigger wildfires,
including high summer temperatures, changing environments, cloud-based
lightning, falling rocks, and the friction of dry branches.

These alarming statistics have motivated researchers to develop reliable systems for
early fire detection. Several researchers have explored soft computing techniques
for preventing the spread of fires using traditional fire alarm systems, conventional
fire alert systems (CFAS), and optical sensors [2]. For fire detection in CFAS,
various scalar sensors were used, including visual, flame, and smoke sensors that
require close proximity to the fire. However, scalar sensor-based systems are
limited in providing additional information, such as area coverage, burning
intensity, location, and fire size. In this study, we employ a small-scale version of
the ConvNext model, suitable for devices with limited resources, offering improved
detection accuracy and reduced false alarm rates. The main contributions of this
study are as follows:

(i) To address the computational resource constraints of 10T devices, we propose a
lightweight deep learning model capable of real-time operation. This model
outperforms the well-known lightweight NASNetMobile and MobileNetV1
networks in terms of accuracy while using only 2.01 and 0.94 million fewer
learning parameters, respectively.

(ii) Existing datasets for detecting wildfires are homogenous in nature, limiting their
generalizability. In contrast, we collected diverse samples from personal repository
videos, social media platforms like Facebook and Instagram, news channels, and
YouTube videos.

The rest of the article is organized as follows: Section 2 provides a brief review of
fire detection literature; Section 3 describes the model's architecture; Section 4
discusses experimental results; and Section 5 concludes the paper.
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2. Literature Review

In recent literature, Conventional Fire Alert Systems (CFAS) and vision
sensor-based systems have demonstrated their relevance in the field of fire
detection. CFAS utilize various environmental sensors, such as smoke detectors,
temperature sensors, and cameras, for detecting fires. However, CFAS technologies
are ineffective at detecting fires over large distances, particularly in outdoor
contexts, and require close proximity to the fire. Moreover, CFAS cannot provide
information about the fire's burning conditions and rate. When an alarm is triggered,
CFAS systems necessitate human intervention, such as visiting the fire site to
confirm its presence. To address these limitations, numerous visual sensor-based
fire detection systems have been proposed in the literature.

Vision-based fire detection systems are broadly divided into two categories:
Traditional Fire Detection (TFD) and deep learning-based approaches. TFD-based
technology relies on pattern recognition and digital image processing. For example,
Liu et al. [3] employed temporal, spatial, and spectral analyses to identify fire
regions in an image. However, their solution does not consistently account for fire's
irregular shape due to the variable form of moving objects. Foggia et al. used
motion analysis, color features, and a bag-of-words approach to detect fire [4].
Khan et al. [5] proposed a cost-effective CNN architecture for fire detection,
offering reasonable computational complexity and suitability compared to more
complex networks like AlexNet. The model is then fine-tuned to improve the
accuracy and efficiency of detecting fire in surveillance videos. Furthermore, Khan
et al. [6] employed an innovative CNN model for fire detection, localization, and
semantic understanding of fire scenarios that is energy-efficient and
computationally effective. It utilizes fully connected layers, a small convolutional
kernel, and no dense layers. Khan et al. [1] introduced an early fire detection system
for managing fire disasters using CCTV cameras and a fine-tuned neural network
capable of detecting fire in both indoor and outdoor settings, along with a dynamic
channel selection method for reliable data transmission.

Chen et al. [7] presented a decision rule-assisted approach to fire detection, relying
on frame-to-frame variation and utilizing the irregular fire attribute for
identification. They also applied an RGB and HIS color model to analyze fire's
dynamic behavior. Marbach et al. [2] introduced a model for flame detection in
tunnels by comparing video frames and their color features. Another algorithm for
real-time fire detection in video games was proposed by [2], focusing on the
temporal variation of fire intensity and employing a YUV color model in
conjunction with motion features to predict fire and non-fire pixels. Han and Lee
[8] developed another model for flame detection in tunnels based on video frame
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Training Dataset

comparison and color feature analysis. Researchers in [9] presented a fire detection
method for forests using wavelet analysis and FFT-based contours. In [10], an
automatic fire detection approach for real-time video footage was investigated,
based on temporal changes in fire intensity to distinguish between fire and non-fire
patterns.

Current literature shows that various fire detection algorithms have been developed,
achieving considerable accuracies. To safeguard lives and property, it is essential to
further enhance detection accuracy while reducing false alarm rates. Additionally,
these models often require powerful GPUs and TPUs, resulting in high
computational costs. In this study, we employ a ConvNext-based deep learning
model for fire detection, which boasts excellent detection accuracy and low false
alarm rates.

3. Proposed Methodology

This section describes our model and overall framework, including data preparation.
The data preparation process readies the data for training and testing. To enhance the
number of training examples for better evaluation and generalization of results, data
augmentation techniques such as scaling, horizontal flipping, rotation, and contrast
enhancement are employed. Augmented datasets are then used to train various
ConvNext models. The subsequent sections offer a brief overview of each phase
within the proposed framework, with Figure 1 serving as a visual representation.

Data Augmentation

Real Time Test

&Video Image

Send Alert to Fire
department,
Police, Hospital,
and Local

Fire Community

ConvNext Deep Model

_.. .
—> Non- Fire

|

No Action

Training Flow g
Testing Flow m——p-

Figure 1: Overall framework of the proposed 10T assisted deep learning-based fire detection.
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3.1. ConvNext CNN Model

The ConvNeXT model was placed in a ConvNet for the 2020s [11]. Inspired by
the Vision Transformers' architecture, ConvNeXT is a pure convolutional model
(ConvNet) that aims to outperform them. The authors employed the AdamwW
optimizer, trained the model across a larger number of epochs, significantly
augmented the data, and utilized regularization techniques. Combining both
methods, the performance of ResNet-50 on ImageNet Topl accuracy improved
from 76.1% to 78.8%. The ConvNeXt model does not require specific modules
such as shifting window attention or relative position biases and has
approximately the same FLOPs, performance, and memory usage as the Swin
Transformer. While these results are promising, they are not yet entirely
convincing, as ConvNext has only been partially explored to date. However, the
scaling behavior of Transformers truly sets them apart.

A significant challenge in computer vision is determining whether a ConvNet
can compete with Swin Transformers on downstream tasks like object detection
and semantic segmentation. In this research, we utilized the ConvNext-tiny
model for fire detection. We chose the tiny version because it is extremely
lightweight and can be easily implemented on 10T devices. Starting with the
pre-trained weights from ImageNet, we fine-tuned the model on the forest fire
dataset using a low learning rate. The model has effectively learned critical fire
patterns, and experimental results demonstrate its robustness in fire detection and
ability to ignore non-fire images.

The architecture of ConvNext is inspired by the Vision Transformers' design, but
it is a pure convolutional model (ConvNet) that aims to outperform them.
ConvNext does not require specific modules, such as shifting window attention
or relative position biases, resulting in a more streamlined model with similar
FLOPs, performance, and memory usage as the Swin Transformer.

In the ConvNext model, several convolutional layers are stacked together,
followed by batch normalization and activation layers. These layers can capture
both low-level and high-level features in the input images. The model also
incorporates skip connections, which help to maintain the gradient flow during
backpropagation and alleviate the vanishing gradient problem. This architecture
allows the ConvNext model to learn complex representations of the input data
and perform well on various computer vision tasks.

We have addressed the overfitting problem in the ConvNext model by using
weight decay and data augmentation techniques. Weight decay adds a
regularization term to the loss function, which helps to prevent the model from
fitting the noise in the training data. Data augmentation techniques, such as
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scaling, horizontal flipping, rotation, and contrast enhancement, increase the
diversity of the training data, further improving the model's generalization
capabilities.

3.2. Data preparation

Preprocessing refers to all modifications applied to the raw data before it is fed
into the proposed lightweight Convolutional Neural Network (LW-CNN)
architecture. For example, classification performance would be negatively
impacted if the CNN architecture is trained on raw data. To enhance
classification performance, we expand the input data through data augmentation
techniques, creating new images with varied orientations, locations, and sizes.
The following sections detail the data augmentation processes employed.

Data augmentation is one of the most widely utilized techniques to generate new
images from existing ones, enabling a deep model to handle various variations.
This technique increases the diversity of images, making CNN architectures
more resilient to challenging situations and improving their classification
capabilities. Through data augmentation, the model gains the ability to generalize
by learning the same object in the image from multiple perspectives. We used
several data augmentation and enhancement techniques before training the model
for this purpose.

We implemented data augmentation techniques such as horizontal flipping,
contrast adjustment, brightness adjustment, and rotation to increase the variety of
training images. Horizontal flipping creates mirror images of the original data,
while contrast and brightness adjustments modify the intensity of the image
pixels. Rotation, on the other hand, transforms the images by specific angles.
These augmentation techniques help the model learn various representations of
the input data, thus enhancing its ability to recognize fire patterns and generalize
well across diverse scenarios.

3.3. Connectivity with 10T

The 10T is considered the future evolution of the Internet. As technology
advances, we are moving towards a society where everything and everyone is
connected to the Internet [12]. The primary aim of IoT is to enable autonomous
and secure connections and data transfers between real-world devices in various
applications. 10T bridges the gap between the physical and digital worlds.

The number of devices connected to the Internet is rapidly growing, including
personal computers, laptops, tablets, smartphones, and other portable embedded
devices. Most mobile devices are equipped with various sensors and actuators
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that can perceive and process data, make intelligent decisions, and transmit
valuable information collected via the Internet. Utilizing a network of such
devices with diverse sensors can lead to a wide array of impressive applications
and services that have the potential to positively impact one's life on personal,
professional, and financial levels. The Internet of Things (1oT) consists of
physical objects, sensor technology, network infrastructure, computing power
that can be stored in the cloud, and systems for making decisions and triggering
actions. These objects are uniquely identifiable, possess specific attributes, and
can be accessed through the Internet. The basic simplified workflow of 10T can
be described as follows:

Sensing, identifying, and communicating information about objects. The
information is the data detected regarding temperature, direction, motion,
vibration, acceleration, humidity, chemical changes in the air, etc., depending on
the type of sensor. A variety of sensors can be used to create intelligent services.
Initiating a response; an intelligent device or system processes the provided
object information and then determines the automated action that should be
executed. The intelligent system/device offers a range of services and has a
method for informing the administrator of the system's current state and the
outcomes of actions taken.

In our proposed system, we are mindful of privacy concerns related to loT
devices. We have designed the framework to ensure that data collection,
transmission, and processing adhere to data privacy regulations and best
practices. By incorporating privacy-preserving techniques, our loT-assisted fire
detection system ensures that personal information and sensitive data are
protected, while still effectively detecting and responding to fire incidents.

3.4. Alert Generation

Once a fire is detected, generating an alarm is a critical step that enables various
emergency services to take prompt action to mitigate the situation. These
services include:

e Fire brigade: Alerting the fire brigade allows them to deploy their
resources swiftly and efficiently to extinguish the fire before it spreads
further, minimizing damage to property and the environment.

e Hospitals and medical teams: Notifying hospitals and medical teams
ensures that ambulances are dispatched to the scene of the fire,
providing timely assistance to any victims who may require medical
attention or evacuation.

e Police department: Informing the police department enables them to
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take legal actions, secure the area, and investigate the cause of the fire,
helping to prevent future incidents and identify any potential criminal
activity associated with the fire.

e Social media alerts: Utilizing social media to inform local residents
about the fire's location allows for early evacuation planning and
heightens community awareness. This rapid dissemination of
information can help to ensure the safety of the neighborhood and
prevent further casualties, particularly if the fire is spreading quickly.

Our proposed fire detection system is designed to facilitate efficient
communication and collaboration between these various emergency services. By
providing real-time alerts and accurate information about the location and extent
of the fire, our system enables a coordinated response, ultimately saving lives,
property, and minimizing environmental damage..

4. Experimental Evaluation

In this section, we provide a detailed overview of the evaluation measures,
statistics, and visual findings. We begin by describing the experimental design and
performance measurements, followed by an explanation of the dataset used, and
finally, we present the results evaluation. All models, including the proposed model,
are trained for 20 epochs with a low learning rate, allowing the network to retain
most of the previously learned information. We retrain each network using its
default input size, a batch size of 32, and the stochastic gradient descent optimizer
with a learning rate set to le-4 and a momentum of 0.9. The performance of the
proposed method is assessed using four metrics: overall accuracy, precision, recall,
and F1-scores, which provide a comprehensive understanding of the model's
effectiveness in various aspects of the fire detection task.

Accuracy = (

TruepositivestTrUeNegatives )

TP+TruenegativestFalsepositivestFalsenegatives

Precision = ( Truepositives )

TruepositivestFalsepositives

Recall = ( TTuepositives )

TruepositivestFalsenegatives

fl score= 2« (

precisionxrecall )
precision + recall
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4.1. Dataset

The proposed method is evaluated using a recently created forest fire dataset [13].
This dataset consists of two classes, forest fire and non-fire, with a combined total
of 2,000 images, where each class contains 1,000 images. The data has been
collected from wvarious sources, including
Facebook, news channels, and YouTube videos. This dataset poses a significant
challenge for evaluation due to the inclusion of numerous non-fire images that
closely resemble fire patterns, as illustrated in Figure 3. This diverse collection of
images allows for a more robust assessment of the proposed method's performance
in detecting fires and distinguishing them from visually similar non-fire scenarios.

real-world self-recorded videos,

4.2. Comparison with State-of-the-Art

The proposed model is compared with other deep learning methods, as shown in
Table 1. Our method achieved the highest fire detection precision of 0.98,
representing a 4% improvement over the previous high of 0.94 achieved by the
VGG16 CNN model, and a high recall of 1.0. For Non-Fire classification, our
model attained a precision of 1.0 and a recall of 0.98, surpassing the previously
high-performing LW-CNN and VGG16 models. With the highest F1-score of 0.99
for both fire and non-fire classes, the proposed method demonstrates its robustness
in detecting fires with a low false alarm rate on the forest fire dataset.

Table 1: Comparison with other fire detection deep learning models on Forest-fire dataset. The values of all models
given in the table are collected from article [13].

Methods Fire_ . Fire Fire Non-.F_ire Non-Fire Non-Fire
Precision Recall F1-Score Precision Recall F1-Score
AlexNet 0.83 0.93 0.86 0.91 0.79 0.8
ResNet50 0.82 0.96 0.87 0.95 0.77 0.86
NASNetMobile 0.90 0.95 0.92 0.94 0.88 0.91
MobileNetV1 0.87 0.99 0.93 0.98 0.86 0.92
VGG16 0.94 0.93 0.93 0.92 0.94 0.93
LW-CNN 0.91 0.98 0.95 0.98 0.91 0.94
Proposed Method | 0.98 1.0 0.99 1.0 0.98 0.99
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Figure 2: The learning graphs, including train, test accuracies, and losses of the ConvNext-tiny model
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Figure 3: Visual findings of the proposed model achieved for challenging images in the dataset for normal and fire
predictions.
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Figure 4: Confusion matrix of the proposed model for forest-fire dataset.
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Figure 2 shows the learning graphs for the proposed model. The training and test
actuaries are increasing to highest point with any sparks in the graph. Same is for
training and testing losses, which indicates that the model is not overfitting. We also
visualized some of the visual results in Figure 3. It can be seen from Figure 4 top
row that images are very similar to fire, however, our model is so robust to detect
those patterns as non-fire class. On the other hand, in second row we can see that
fire is very tiny portion of the image, but it is correctly detected by the proposed
model. Figure 4 shows the confusion matrix of the proposed model over test data
using forest fire dataset. The proposed model obtained 99% and 98% accuracy for
the fire and non-fire classes, respectively. This illustrates the effectiveness of the
suggested model over forest fire dataset. The confusion matrix provides a summary
of the classification performance of the proposed model on the forest fire dataset. In
this case, the confusion matrix shows the following results:

e  Fire detected as fire: 1.0

o Non-fire detected as fire: 0.0152

e Non-fire detected as non-fire: 0.985
These results indicate that the model has excellent performance in detecting fires,
with a true positive rate of 1.0. This means that all fire instances in the test dataset
were accurately identified as fires by the model. However, the model also shows a
small false alarm rate, as it incorrectly classifies 1.52% (0.0152) of non-fire
instances as fires. While this rate is low, it still represents a minor limitation of the
model. The false alarm rate is an important metric to consider, as false alarms can
lead to unnecessary emergency responses, wasting resources, and potentially
causing panic.
On the other hand, the model has a high true negative rate of 0.985, meaning that
98.5% of non-fire instances were accurately identified as non-fires. This high true
negative rate, combined with the low false alarm rate, demonstrates the overall
robustness and effectiveness of the proposed model in detecting fires and
minimizing false alarms in the forest fire dataset.

4. Conclusion

In this study, we presented a deep learning model with 10T support for effective fire
detection. The pre-trained weights of the ConvNext model are utilized to identify
minute details and clearly distinguish between lights and fire patterns. The model is
fine-tuned for the forest fire dataset. We employed an IoT system that functions
when a fire is detected. The loT device is mounted with a camera, and when it
detects fire, it generates an alarm and sends it to concerned departments so that they
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can take the required steps to stop its spread. By comparing our approach to the
current state-of-the-art model, we were able to increase accuracy by 4% using the
forest fire dataset.

One limitation of our method is its struggle to detect long-range fires due to the
unavailability of data representing such scenarios in the dataset. In the future, we
will work on the efficiency of the deep models to run them in real-time on small
IoT devices. Additionally, we will investigate more scenarios and datasets,
including those containing long-range fire examples, to address this limitation and
further improve the performance of our fire detection system..
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