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Physical layer authentication (PLA) has emerged as a promising alternative to complex cryptographic-based authentication
schemes, especially for the Internet of Vehicles (IoV) scenarios with resource-limited onboard units (OBUs). However, the existing
PLA schemes securing the IoV against GPS location spoofing/falsification attacks consider only insider attackers. Moreover, they
cannot be used by mobile vehicles to validate GPS locations. To address these issues, this paper proposes a PLA scheme based on
the Gaussian process (GP) path loss prediction, where channel state information (CSI) is used to track the variation of the channel
characteristics and predict the next legitimate path loss (PL) of the signal from a transmitter for authentication. The key ideas in the
proposed scheme are to first establish a mapping between the historical CSI attributes and PL features of the transmitter’s signal
and use this mapping to predict the next PL, which is then used to cross-verify the transmitter’s reported location information.
Extensive simulation experiments are conducted using generated radio channel characteristics from the quasideterministic radio
channel generator (QuaDRiGa) to demonstrate the effectiveness of the proposed approach. The results of the experiments show
that our system efficiently addressed the limitations of the existing works and improves the authentication performance in IoV
environments.

Index Terms—Internet of vehicles (IoV), Gaussian process (GP), machine learning (ML), physical layer authentication (PLA),
path loss (PL).

I. INTRODUCTION

The developments in wireless communication technologies
witnessed in the past few decades have enabled the emergence
of the Internet of Vehicles (IoV) in which vehicles exchange
safety messages over open wireless channels [1], [2]. As an
essential component of the future intelligent transportation
system (ITS), IoV is a two-sided coin: while its deployment
has the potential to improve road safety and traffic man-
agement [3], thereby saving lives, the broadcast nature of
its communication through public wireless channels exposes
the exchanged safety messages to unauthorized access and
tampering, which could have life-threatening consequences
[3]. Thus, it is vital to provide authentication solutions for
secure IoV communications [4].

Traditionally, key-based cryptographic authentication ap-
proaches have been utilized to secure IoV against security at-
tacks through encryption/decryption algorithms. For example,
a three-level security framework called NOTSA is designed
to secure onboard units (OBUs) communication [5]. Wazid et
al. [6] designed an elliptic curve cryptography (ECC) based
authentication scheme, where vehicles are directly verified by
servers. A zero-knowledge proof (ZKP) technique is utilized in
[7] to secure OBU communication and ensure secure toll pay-
ment processing. In [8], Ma et al. put forward a multicast ser-
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vice authentication scheme for 5G-based vehicle-to-everything
(V2X). In [9], the authors proposed a certificateless authentica-
tion approach, which utilized the Chinese remainder theorem
to effectively distribute keys and conduct dynamic wiretapping
for anomaly detection. In [10], Yang et al. developed a
cooperative-based authentication, where vehicles are verified
by a small number of already authenticated vehicles. In [11],
authentication keys are pre-distributed using the future location
of vehicles predicted through the recurrent neural network
(RNN). In [12], the authors presented a handover authentica-
tion approach for IoV communications. In [13], Zhang et al.
put forward SMAKA, an effective authentication framework
that secures vehicles to cloud server communications. Despite
their proven security strength in that they cannot be broken by
attackers without the decryption keys, these above schemes
have high computation requirements making their adoption
by the IoV applications with resource-constraints OBUs very
difficult. Moreover, the complex key management procedures
in these schemes incur unacceptable latency, especially for the
delay-sensitive IoV applications. Thus, it is vital to provide
lightweight authentication approaches for the IoV network.

A. Developments and Limitations of the Existing PLA

To address the limitations of the above cryptographic-
based authentication approaches in the IoV, physical layer
authentication (PLA) technology has emerged in recent years
[14]. It is a type of authentication characterized by low compu-
tational complexity and low latency, making it suitable for the
resource-limited OBUs in the IoV network. Specifically, PLA



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, FEBRUARY 2023 2

utilizes machine learning (ML) [14] or hypothesis test [15]
to facilitate device verification through physical layer channel
features extracted from radio signals. The key idea in PLA
is that the previously known signals declared by a legitimate
vehicle should be close to the current signal received from that
vehicle. Thus, authentication can be achieved by comparing
the current signal attributes with the ones previously extracted
from the legitimate vehicle. Commonly used channel attributes
as the unique physical layer signatures for authentication
include channel state information (CSI) [14], [16], received
signal strength (RSS) [15], and angle of arrival (AoA) [17],
which are both vehicle location and speed dependent. Based on
the well-known principle that two legitimate devices measure
similar channel characteristics, which are different from the
channel characteristics of an attacker that is located half a
wavelength [14], it is difficult for the channel between the
legitimate transceivers to be forged by an attacker. As a result,
CSI, as a fine-grained location/speed-specific channel attribute
has been utilized as a unique fingerprint to verify legitimate
vehicles.

Along this line, several works utilized CSI to design authen-
tication approaches in IoV scenarios. In [18], Wang et al. set
up a hypothesis test exploiting extended and unscented Kalman
filters on RSS, speed, and distance between vehicles to achieve
authentication. In Wang et al. [15], the statistical properties
of noise in RSS and CSI are adjusted using the Sage-Husa
adaptive Kalman filter for authentication in the IoV network.
However, the thresholds for the hypothesis test in [15] and
[18] may not be always available in dynamic IoV environment.
Consequently, several works exploiting the internal features of
the CSI through ML approaches have been proposed [19], [20],
[21], [22]. Both Yin et al. [19] and Fang et al. [20] utilized
multiple physical layers attributes jointly to provide robust
ML-based authentication in the IoV environment. In [19], the
attributes are chosen according to their past authentication
performance while in [20], a kernel fusion machine is designed
to deal with the multiple attributes without requiring the previ-
ous knowledge of their statistical properties. Moreover, Chen
et al. [21] proposed a convolutional neural network-based
authentication and data augmentation approach named triple
pool network (TP-Net) for an edge computing system. In [22],
a threshold-free authentication scheme is designed using a
support vector machine (SVM), a decision tree, and ensemble
learning. In [14], Wang and Fu put forward a Gaussian process
(GP) based authentication scheme, where the channel of a
legitimate vehicle is tracked and predicted using the previous
relationship between the CSI and the geographical location of
the vehicle. A CSI-based deep learning authentication scheme
is designed in [16] to verify devices according to the CSI
signature of their fixed locations.

Thanks to the integration of the ML techniques, the sta-
tistical distribution of CSI in the above ML-based schemes
is not required and the thresholds are determined through
training. However, most of the ML-based schemes are not
secure against GPS location spoofing attack. Thus, authen-
tication approaches have been designed recently to secure
the IoV network from location spoofing/falsification attacks,
which could have life-threatening consequences. In [23], an

unscented Kalman filter is used on RSS data to design a
misbehavior detection approach and protect the IoV against
GPS location spoofing/falsification attacks. Three plausibility
checks techniques are set up using RSS data to detect insider
attackers in the IoV network [24]. In [17], the AoA of
received signals is used to cross-check location information
reported by vehicles and protect the IoV against location
spoofing/falsifying attacks.

However, the above PLA approaches do not consider out-
side attackers for GPS location spoofing/falsification attacks
(i.e., they only consider insider attackers). In a normal IoV
setting, vehicles are most of the time moving and rely heavily
on GPS technology to achieve fine-grained positioning. The
commercial GPS receivers in most of these vehicles have
been proven to have insecure designs exposing them to GSP
signal spoofing attacks, where GPS receivers are tricked into
accepting signals from attackers as though they are from
legitimate GPS satellites. Although the protection against
location spoofing/falsification attacks from insider attackers in
the existing PLA schemes [23], [24] ensures that legitimate
vehicles are not tricked into disseminating false locations that
could lead to accidents, GPS location spoofing/falsification
attacks from outside attackers could lead to the impersonation
of legitimate vehicles by attackers or rejection of legitimate
vehicles due to their spoofed locations. Thus, it is essential
as well to prevent the IoV network against such attacks from
outside attackers.

Another critical limitation of the existing PLA schemes
is that they cannot be used by mobile vehicles to validate
reported location information (i.e., they can only be used by
stationary road-side units (RSUs) to validate reported locations
of vehicles, not the other way around). In [17], for instance,
only RSU can validate reported locations by vehicles during
authentication. However, most of the time, the vehicles in
the IoV network are mobile, making it difficult to adopt the
existing schemes.

Overall, the performance of the existing PLA schemes could
be severely affected due to the potential GSP location spoof-
ing/falsification by outside attackers and the mobile nature of
the vehicles in the IoV network. It is impractical to limit the
prevention of these attacks from just insider attackers and by
only static RSUs.

B. Our Solutions

To address the above limitations, we propose tracking and
predicting the channel of legitimate vehicles based on the
physical environment. In IoV applications, it is not out of
place to assume that the trajectories of legitimate transmitters
could be priori known by legitimate receivers. Our solution
consists of two steps: First, we establish a mapping between
historical CSI attributes and the corresponding path loss (PL)
features and use this mapping to predict the next legitimate
PL feature of a transmitter’s signal. Second, the predicted PL
feature is then used to cross-verify the transmitter’s reported
location information. The main innovation of our work is
the verification of claimed locations of transmitters through
PL measurements predicted using CSI attributes, which are
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significantly dependent on the transmitter’s location and speed.
This verification ensures that legitimate transmitters under
location spoofing attack are not mistakenly rejected while
impersonator vehicles are correctly rejected. The path loss of
a signal is defined as the reduction of the signal’s power as
it travels through a medium. We propose to utilize a non-
linear kernel function-based Gaussian process (GP) [25] to
establish the relationship between the historical CSIs and
the corresponding PL features of the legitimate transmitter’s
signals. Based on this established mapping, we predict the
next legitimate PL feature of the transmitter’s signal for
authentication. The GP has in the last few decades received
increasing attention especially for the prediction of vehicle
trajectory thanks to its excellent performance even without
a large amount of training data [25]. Furthermore, due to
the absence of the attacker’s PL estimates or its channel
characteristics distribution, our scheme is a variant of one-
class authentication which focuses on only the PL of legitimate
vehicles for authentication decisions. After the next legitimate
PL is predicted, we derive an acceptance region around the
predicted PL to determine whether the received signal comes
from a legitimate vehicle or an impersonator.

C. Contributions
Aiming to address the limitations of the existing PLA

schemes, we propose a PLA approach based on signal prop-
agation attribute prediction to secure IoV communications
against GPS location spoofing and falsification attacks from
outside attackers. Specifically, the main contributions of our
work are summarized as follows.

1) First, we introduce PL information as a security parameter
that is utilized as a solution to the problem of legitimate
transmitters under location spoofing attack being rejected
and that of outside attackers with stolen identities at-
tempting to impersonate legitimate vehicles.

2) Second, we exploit the relationship between previously
obtained CSI estimates and their corresponding PL mea-
surements of the signals from legitimate transmitters and
use the GP to predict the next PL of the transmitter’s
signal. The predicted PL is then used to cross-verify the
claimed location information of the transmitters.

3) Finally, to demonstrate the effectiveness of our approach,
we utilized a quasideterministic radio channel generator
(QuaDRiGa) [26] simulation platform to generate realis-
tic CSI measurements and conduct system-level simula-
tion experiments. The results of the simulations show that
the introduction of PL measurements has significantly
addressed the challenges of the existing approaches.

Following the introduction in Section I, the rest of this
article is structured as follows. Section II describes the system
model in detail and introduces the GP regression. Section III
describes the proposed signal propagation attribute prediction
based authentication scheme. Section IV presents the results
of the conducted simulation experiments and their analysis.
Lastly, Section V gives the conclusions of our work.

Notations: Matrices and vectors are represented using bold
uppercase and lowercase letters, respectively. Transpose, in-
verse, and determinant of a matrix are denoted by (·)T , (·)−1,

and det(·). I denotes the identity matrix and E(·), var(·), p(·)
represents expectation, variance, and probability operators.
g ∼ N (0,R) denotes a zero mean Gaussian random vector
g with covariance matrix R and zero mean.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we present the considered system model and
discuss some preliminaries.

A. System Model
As depicted in Fig. 1, we consider the well-known Alice-

Bob-Eve model in the IoV environment. In this model, Alice
is a legitimate vehicle that wishes to continuously exchange
information with legitimate RSU referred to as Bob in a
secure manner. Eve in our model is an attacker vehicle that
continuously attempts to impersonate Alice or Bob. Bob is
assumed to be situated in a fixed location, while Alice and
Eve are assumed to be either stationary or mobile at any
time. Both Alice and Bob are equipped with resource-limited
sensors and OBUs, while Eve is assumed to have illegal
OBUs and sensors that are used by Eve to launch security
attacks. We consider two communication scenarios: vehicle-
to-vehicle (V2V) and infrastructure-to-vehicle or vice versa
(I2V/V21). In our model, Bob builds up a table containing
the P̂LA(t − 1) (i.e., the last path loss value of the last
signal from Alice received by Bob) and the corresponding last
location information of Alice. This stored P̂LA(t− 1) is the
verified path loss value of Alice’s legitimate message estimated
during the channel estimation stage between Bob and Alice.
The P̂LA(t − 1) value is critical in our scheme because it
will be used by Bob to determine whether the next message
received by Bob at a time t is from Alice or Eve depending on
whether the predicted path loss value of the message P̃L(t)
at a time t is close to the last P̂LA(t−1) of Alice’s message.

Fig. 1. System model.

In this model, the relationship between the CSI and their
corresponding PL measurements in the past t − 1 time slots
is constructed and a GP model is trained offline to recog-
nize this relationship and predict the next legitimate PL at
time t for authentication. The CSIs and the PL measure-
ments are estimated by exchanging known pilot sequences



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, FEBRUARY 2023 4

between Alice and Bob in the past t − 1 times. Assum-
ing an orthogonal frequency division multiplexing (OFDM)
system, we extract channel frequency response (CFR) ma-
trix from the estimated CSI of M subcarriers in the past
t − 1 times to obtain an M -dimensional CFR matrix which
can be denoted as

{
ĥA(v)

}
, v = 1, 2, . . . , t − 1, where

ĥA(v) =
(
ĥ
(1)
A (v), ĥ

(2)
A (v), . . . , ĥ

(M)
A (v)

)T
. During the online

authentication when Alice sends Bob her claimed location
information at time t, the CSI vector ĥA(t) of the received
Alice’s signal is inputted into the trained GP model to predict
the P̃L(t) of the signal from Alice. After that, Bob then
obtains the P̂LA(t − 1) of the last Alice’s signal from the
table it keeps for Alice. Note that throughout this paper, we
refer to the last PL of Alice’s signal as expected path loss.
Next, Bob formulates the problem of authentication as a binary
hypothesis test as

H0 : P̃L(t) = P̂LA(t− 1)

H1 : P̃L(t) ̸= P̂LA(t− 1),
(1)

where H0 indicates that the received message is from Alice,
whereas the H1 means that the received signal is from Eve.

Moreover, we assume a symmetric channel between Alice
and Bob, and thus, our scheme can be used by both Alice
and Bob to authenticate each other, thereby addressing the
limitation of the existing schemes since they cannot be applied
by moving vehicles to validate reported location information.

B. Attack Model

Eve in this model is assumed to be an outsider attacker
capable of launching impersonation and GPS location spoofing
attacks. During the impersonation attack, Eve fabricates the
identities of Alice or Bob and uses them to impersonate
Alice to Bob and vice versa. In the GPS spoofing attack,
Eve tricks Alice into sending the wrong location information
by interfering with the signals from GPS satellites meant for
Alice’s GPS receivers, which could lead to Alice’s messages
being rejected. Moreover, we assume that Eve is aware of the
channel characteristics in the environment of Alice and Bob
and can estimate the channel between itself and either Alice
or Bob. Eve can also eavesdrop on the channels of Alice and
Bob and inject false data. We also assume that Eve is located
at least half a wavelength away from the locations of Alice
and Bob and thus cannot be able to estimate the exact channel
between Alice and Bob due to the channel decorrelation nature
in time and space. Note that we do not consider jamming or
denial-of-service (DoS) attacks in this work.

C. Gaussian Process Regression in Internet-of-Things Secu-
rity

The Gaussian process (GP) regression is a powerful state-of-
the-art tool for prediction and function approximation, which
has recently been shown to excel in IoV security, especially
for the prediction of vehicle trajectory [14]. As a kernel
method of the Bayesian non-parametric system, the GP model
approximates a distribution of training data by finding a
solution to a series of hyperparameters so that corresponding

output under random input can be obtained during prediction.
In the following, we give a brief introduction to the GP and
refer readers to [25] for a more detailed discussion.

Given a set of training data H = (h1,h2, . . . ,hD)T where
hn = (hn,1, hn,2, . . . , hn,q)

T and the matching training labels
y = (y1, y2, . . . , yD)T , where D represents the size of the
training data and q represents the dimension of the training in-
put. If we imagined the training data as a single point sampled
from some multivariate Gaussian distribution, the training data
can be partnered with a GP, which is completely determined
by a mean m(h) (assumed to be zero everywhere) and a
covariance function k(h,h

′
). The k(h,h

′
) relates one sample

in the training data to another and one of the popular choices
for such a function is the squared exponential expressed as

k(h,h
′
) ≜ σ2

fexp

−1

2

(
h − h

′
)T (

h − h
′
)

σ2
l

+ σ2
nδh,h′ ,

(2)
where σf is the signal variance, σl denotes the characteristic
length scale, and σn is the variance of the input noise to signify
the randomness attributes of wireless communication.

With the training data and training labels H and y, re-
spectively, the logarithmic marginal likelihood function can
be derived as

log p(y|H) = −1

2
yT K−1y − 1

2
log |K| − D

2
log 2π, (3)

where K is the covariance matrix for the noisy target outputs
y, which consists of the covariance function among all the
pairs of the training samples and is expressed as

K(H,H) ≜


k(h1,h1) k(h1,h2) · · · k(h1,hN )
k(h2,h1) k(h2,h2) · · · k(h2,hN )

...
...

. . .
...

k(hN ,h1) k(hN ,h2) · · · k(hN ,hN )

 .

(4)
The hyperparameters of the GP model are determined by
maximizing the marginal log-likelihood function in (3). Given
a single input h∗ during prediction, its output y∗ proven to also
obey a Gaussian distribution [25] has a mean and variance as

ȳ∗ = kT
∗ K−1y (5)

and

var(y∗) = K∗∗ − kT
∗ K−1k∗, (6)

respectively, where k∗ = K(h∗,H) and K∗∗ = k(h∗,h∗). By
adopting the GP model in our work for path loss prediction
where the output is the PL at the next time slot, the training
data H and labels y represent the previous CSIs and the
corresponding PLs, respectively. After the GP model is trained,
by putting a new CSI vector h∗, the model predicts the mean
and variance of y∗, i.e., the path loss.

III. THE PROPOSED SIGNAL PROPAGATION ATTRIBUTE
PREDICTION BASED PHYSICAL LAYER AUTHENTICATION

SCHEME

As depicted in Fig. 2, the proposed PLA approach is made
up of two functional components: 1) offline training; 2) online
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authentication. Before the offline training, we collected raw
CSI, 2-D location, PL data, and the identity of Alice. First,
we discuss the offline training methodology and then describe
the authentication procedure of the proposed PLA scheme.

Fig. 2. Flowchart of the proposed scheme.

A. Offline Training

The main elements of our proposed PLA scheme are the CSI
and the PL acquired through the channel estimation procedure
[20], [21]. In this section, we first describe the procedure for
the CSI and PL data estimations and then discuss the training
of the GP model.

1) CSI Data Estimation
The signal from Alice received by Bob during the CSI

estimation is given as

yρ(v) = hρ × xρ(v) + ω(v), (7)

where yρ is the received signal at time v = 1, 2, . . . , t − 1,
where v denotes the time interval between every message, hρ

denotes the channel matrix in the time domain containing the
channel coefficients, xρ is the pilot signal known to both Alice
and Bob used for the estimation of the CSI and the PL, and
ω(v) represents the white Gaussian noise with variance σ2.

The time domain channel estimated by Bob though the channel
estimation is given by

h(v) = yρ(v)×
1

xρ(v)

= (hρ × xρ(v) + ω(v))× 1

xρ(v)

= hρ + ω(v)× x−1
ρ (v),

(8)

where x−1
ρ (v) is the inversion of xρ(v). Finally, Bob obtains

the channel frequency response (CFR) matrix through the
discrete Fourier transformation (DFT) of the above time-
domain channel. The CFR matrix of Alice’s signal is ex-
pressed as HA =

(
ĥ
(1)

A , ĥ
(2)

A , . . . , ĥ
(M)

A

)
, where ĥA(v) =(

ĥ
(1)
A (v), ĥ

(2)
A (v), . . . , ĥ

(M)
A (v)

)T
. For simplicity, we use sin-

gle receiving/transmitting antennas, 64 subcarriers, and thus,
for the entire duration of the CSI data collection, Bob collects
64 × v raw CSI estimates, where v = 1, 2, . . . , t − 1 stands
for the number of previous times Alice sends the pilot signal
to the Bob.

2) Path Loss Data Estimation
Bob obtains the observed PL of the signals from Alice in

decibel (dB) during the channel estimation procedure, which
is expressed as

PLA(v) = E × log10(d (v)) + F, (9)

where E = 28.5 dB/log10(m) and F = 38 dB are path loss
dependent distance between Alice and Bob and reference PL
at 1 GHz/1 m distance between Alice and Bob, respectively.
d is the current distance between Alice and Bob in meters.

It should be noted that the values of E and F are
estimated from the Berlin survey, Germany (Berlin Uma),
which are used in QuaDRiGa [26]. The obtained PL vector
from Alice during the channel estimation is expressed as

ŷA =
(
P̂LA(1), P̂LA(2), . . . , P̂LA(v)

)T
. We assume that

Alice and Bob are associated with anonymous identities ID,
and they have GPS location information of themselves and
each other through exchanging of known pilot signals. Each
of the pilot signals exchanged between Alice and Bob during
the channel estimation stage contains the 2-D location of Alice
(l̂Av,1

, l̂Av,2
) and her identity IDA. Using the expected PL, the

IDs, and the 2-D location information collected through the
channel estimation procedure, Bob builds up a table as shown
in Table I containing the expected PL value (i.e., the path
loss value of the last signal from Alice, which in this case
is P̂LA(t − 1)) and the corresponding 2-D location and ID
of Alice contained in the last Alice’s signal received by Bob.
The main objective of Bob as an authenticator is to check the
consistency between the expected PL of Alice’s message and
the predicted one by the GP model.

TABLE I. List of 2-D Location and Expected Path Loss
Associated with Alice.

Alice’s ID 2-D Location Expected PL

IDA (l̂A(t−1),1
, l̂A(t−1),2

) P̂LA(t− 1)
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3) GPR Model Training
After the creation of the table containing the ID, 2-D

location, and expected PL of Alice at t− 1 time by Bob, the
next stage is the training of the GP model using the estimated
CFR matrix HA as the training data set and the PL vector ŷA
as the corresponding training label set. The generated training
input and target sets are expressed as

Dtrain = (Htrain, ytrain) , (10)

where

Htrain =


HA1

HA2

...
HAn

 , (11)

ytrain =


ŷA1

ŷA2
...

ŷAn

 . (12)

The covariance matrix in (4) can be represented as K(H,H)
consisting of covariance functions k(hi,hj) over all pairs of
the training sets and can be expressed as

k(hi,hj) ≜ (σf )
2exp

(
−1

2

(hi − hj)
T
(hi − hj)

(σl)2

)
+ (σn)

2δhi,hj , i, j = 1, 2, . . . , v,

(13)

where σ2
l is used to control the variations scale of the CSI

vectors of all the subcarriers. The hyperparameter set of the
GP model is defined as θ ≜ {σf , σl, σn}. Following the GPR
process described in Section II, we derive the optimal solution
of the hyperparameters through maximizing the marginal log-
likelihood function in (3) by seeking the partial derivates of
the marginal log-likelihood concerning the hyperparameters as
follows:

∂

∂θj
log p (ŷA|HA) =

1

2
(ŷA)

T K−1 ∂K
∂θj

K−1 (ŷA)

− 1

2
tr
(

K−1 ∂K
∂θj

)
=

1

2
tr
((

ααT − K−1
) ∂K
∂θj

) (14)

where α ≜ K−1ŷA, θj ∈ θ, j = 1, 2, 3. We have

∂K
∂θ1

= 2σfR

∂K
∂θ2

= (σf )
2 R ⊙ P

∂K
∂θ3

= 2σnI

where R(i, j) ≜ exp
(
−(1/2)(hi − hj)

T (hi − hj)/(σl)
2
)
,

P(i, j) ≜
[
(hi,1 − hj,1)

2 + (hi,2 − hj,2)
2
]
/(
[
(σl)

3
]
). Af-

ter the prediction model is obtained through the optimiza-
tion of the above hyperparameters, a CSI vector ĥA(t) =(
ĥ
(1)
A (t), ĥ

(2)
A (t), . . . , ĥ

(M)
A (t)

)T
of a signal from Alice at a

time t is inputted into the trained model to predict the path
loss P̃LA(t) referring to (5), where

P̃LA(t) = kT K−1ŷA, (15)

and k ≜ (k(ht,h1), k(ht,h2), . . . , k(ht,hN )))T , where
k(ht,hn) is as defined in (13). Due to the presence of noise
in our communication model, the predicted path loss is not
perfect and there will always be a prediction error. Thus, the
predicted output can be expressed as

P̃LA(t) = P̂LA(t− 1) + ε(t), (16)

where P̂LA(t− 1) denotes the expected PL from Alice in the
table maintained by Bob and ε(t) ∼ N (0, σ2

pre(t)I) represents
the prediction error.

B. Online Authentication

In this section, we discuss the authentication procedure
between Alice and Bob executed each time they want to
communicate as illustrated in Fig. 2 and summarized in
Algorithm 1.

First, in Algorithm 1, Alice begins by sending a message
to Bob containing its claimed 2-D location (l̂At,1

, l̂At,2
) and

identity IDA at a time t (line 1). Upon receiving the message
from Alice, Bob first obtains the observed CSI vector ĥA(t)
of the signal and then inputs it into the trained GP model
to predict the path loss P̃LA(t) of the signal from Alice
(lines 2-3). Next, Bob checks his Table I, which contains the
previously obtained path loss value of the last signal from
Alice before time t, and uses Alice’s identity IDA to get
the recently stored expected path loss value P̂LA(t− 1). Our
reason for using the P̂LA(t − 1) at a time t − 1 is that the
current path loss value P̃LA(t) at t is closer to the P̂LA(t−1)
than it is to say P̂LA(t− 2) or P̂LA(t− 3). This is because,
beyond a certain range of both geographical locations and
time intervals, the PL values can be considered uncorrelated.
Bob then uses the predicted P̃LA(t) and calculates a decision
region to determine whether to accept or reject the message
from Alice as follows (line 4).

D1
A(t) =

[
P̃LA(t)− zε̄(t), P̃LA(t) + zε̄(t)

]
, (17)

where ε̄(t) stands for the cumulative prediction error of the
previous path loss values and z is a parameter controlling
the performance of the false alarm and miss detection. The
previous cumulative prediction error ε̄(t) is define as

ε̄(t) =
1

t− 1

t−1∑
v=1

ε(v), (18)

where ε(t) = P̃LA(t) − P̂LA(t − 1) denotes the path loss
prediction error at a time t.

Next, Bob checks if the predicted P̃LA(t) is close to the
P̂LA(t − 1) (line 5). If the two path loss values are close,
then Bob checks if the current claimed location (l̂At,1

, l̂At,2
)

by Alice is also close to the previously stored location
(l̂A(t−1),1

, l̂A(t−1),2
) (line 6). If they are close, Bob is sure

that Alice is legitimate. Bob then accepts the message from
Alice, discards the immediate past location (l̂A(t−1),1

, l̂A(t−1),2
)
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and path loss P̂LA(t − 1) entries in Table I, and replaces
them with the current (l̂At,1

, l̂At,2
) and P̃LA(t) (line 7). This

step reduces storage cost on Bob by simply removing the
entries that have less or no correlation with the newly obtained
entries. If the two locations aren’t close but the two path loss
values are close, Bob still accepts the message from Alice and
concludes that Alice is a legitimate vehicle under a location
spoofing attack. Bob then replaces the previous path loss value
P̂LA(t−1) with P̃LA(t) in Table I and maintains the previous
location of Alice (l̂A(t−1),1

, l̂A(t−1),2
) as the current one instead

of the spoofed one (l̂At,1
, l̂At,2

) (lines 8-10). Otherwise, if both
the two path loss values P̂LA(t− 1) and P̃LA(t) as well as
the two locations (l̂A(t−1),1

, l̂A(t−1),2
) and (l̂At,1

, l̂At,2
) are not

close, Bob concludes that Alice is an impersonator vehicle,
rejects the message from Alice, and keeps P̂LA(t − 1) and
(l̂A(t−1),1

, l̂A(t−1),2
) to be used for the next time slot (lines

11-13). Finally, Bob computes the new prediction error ε(t)
using P̃LA(t) and P̂LA(t−1) . Bob then updates the time to
t = t + 1 and computes the cumulative prediction error ε̄(t)
for the path loss to be used by Bob in the next t+1 time slot
(lines 14-15).

Algorithm 1: Summary of the Authentication at a time
t in the Proposed Scheme

Input: (l̂At,1
, l̂At,2

), IDA;
Output: Accept or reject the received message;
Initialization: z, ε̄(t);

1 Alice sends its claimed (l̂At,1
, l̂At,2

) and IDA at a
time t to Bob;

2 Bob obtains the observed CSI vector ĥA(t) of the
signal from Alice;

3 Bob inputs ĥA(t) into the trained GP model and
predicts P̃LA(t);

4 Bob obtains the expected P̂LA(t− 1) from its Table I
using Alice’s identity IDA and uses P̃LA(t) to
calculate the decision region D1

A(t) by (17);
5 if P̂LA(t− 1) is within the decision region D1

A(t) then
6 if (l̂At,1 , l̂At,2) is close to (l̂A(t−1),1

, l̂A(t−1),2
) then

7 Bob accepts this message, replaces P̂LA(t− 1)

with P̃LA(t) and (l̂A(t−1),1
, l̂A(t−1),2

) with
(l̂At,1

, l̂At,2
) in Table I (Go to line 14).

8 else
9 Bob accepts this message, replaces P̂LA(t− 1)

with P̃LA(t) and keeps (l̂A(t−1),1
, l̂A(t−1),2

) in
Table I (Go to line 14).

10 end if
11 else
12 Bob rejects this message. Keeps P̂LA(t− 1) and

(l̂A(t−1),1
, l̂A(t−1),2

) in Table I.
13 end if
14 Bob calculates ε(t) = P̃LA(t)− P̂LA(t− 1), set

t = t+ 1;
15 Bob calculates ε̄(t) through (18).

IV. NUMERICAL RESULTS

In this section, we study the performance of the proposed
PLA scheme. To model both mobile and stationary IoV scenar-
ios, we use QuaDRiGa to simulate multipath fading channels
and obtain CSI and PL data. QuaDRiGa generates radio chan-
nel impulse response (CIR) and PL data according to realistic
communication scenarios for system-level simulations. First,
we explain the methodology for the dataset generation for the
training and testing of the GP model. After that, we analyze
the performance results of the proposed scheme.

A. Generation of Dataset and GPR Model Training

To train the GP model and evaluate the performance of the
proposed PLA approach, we use one legitimate vehicle named
Alice and one legitimate RSU named Bob through the time
evaluation function in QuaDRiGa and customize their trajecto-
ries and generate continuous channel impulse responses (CIR)
that vary when Alice moves along her trajectory. We sampled
3000 datasets each for Alice and Bob for the training. For
the test datasets, we sampled 1500 datasets each for Alice
and Bob. We also use one attacker vehicle named Eve, which
is randomly located around Bob and Alice and we sampled
1500 datasets for Eve to test the attack mitigation performance
of our approach. The settings of the parameters for the
communication scenarios in the customized time evolution
function of the QuaDRiGa are based on the terrestrial urban
microcell parameters estimated in the Berlin survey, Germany
(Berlin Uma) with 64 subcarriers and a carrier frequency of
2.53 GHz. After the training of the GP model, we test its
prediction performance and plot the results in Fig. 3. We use

Fig. 3. Prediction performance.

mean square prediction error (MSE) expressed as

MSE =
1

N

N∑
i=1

(
P̃LA(i)− P̂LA(i− 1)

)
, (19)

where N is the number of the test sample to evaluate the
prediction performance of the trained GP model and is about
0.01. The result of the prediction from Fig. 3 shows that
our trained GP model can accurately capture the variation
of the PL features of the channel and further improve the
authentication process in the IoV environment.

B. Evaluation Metrics

We use false alarm rate (FA) and miss detection rate (MD)
as metrics to evaluate the performance of the proposed au-
thentication approaches. FA is defined as the rate at which
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messages from a legitimate vehicle are erroneously rejected
as attack attempts, while MD refers to the rate at which
the messages from the attacker are incorrectly accepted as
legitimate ones. FA and MD are respectively expressed as

FA =
number of rejected legitimate messages

total number of legitimate messages
, (20)

MD =
number of accepted attack messages

total number of attack messages
. (21)

C. Performance Results and Discussions

In this subsection, we evaluate the performance of our ap-
proach under different values of the decision range parameter
z and varying trajectories of Eve.

1) Overall FA and MD of the Proposed Scheme
We first study the FA and MD rates of our scheme with

varying values of z, 64 subcarriers, and SNR = 5 dB. In this
experiment, Eve and Alice move on a linear trajectory of 600
m. The suitable decision region can be chosen according to
the different requirements of the FA. In this article, we are
interested in the decision region between 3.6 to 5, i.e., z ∈
[3.6, 5]. As shown in Fig. 4, our scheme achieves the average
FA and MD rates of 0.14 and 0.17, respectively. We observe
that in the interested decision region, the FA decreases with the
increase in z while the MD increases as z increases. Based on
this result, we can conclude that the value of the parameter z
is significant in determining the FA rate of the scheme and its
value should be adjusted based on the accuracy requirement.

Fig. 4. Performance with varying decision region parameter z.

2) FA and MD of the Proposed Scheme Under Different
Eve’s Trajectories

Finally, we compare the performance of our scheme under
two trajectories of Eve, one is a linear track of 600 m with
Eve starting position set to 20 m away from Bob (”Near”
case) and the other is a linear track of 600 m with Eve’s
starting position set to 30 m away from Bob (”Far” case) as
depicted in Fig. 5. This test in important because distance
significantly affects the quality of the received signal, which in
turn affects the performance of the proposed approach. Similar

Fig. 5. Scenario design.

to the first evaluation, our interested decision region is also
z ∈ [3.6, 5], with 64 subcarriers and SNR = 5 dB. Fig. 6
shows the performance of our scheme from which we can
make two observations. First, like the first evaluation above,
the FA decreases with the increase in z while the MD increases
as z increases. Second, the ”Far” case shows a decrease in MD
and an increase in FA than the ”Near” case. This is because the
further Eve is from Bob, the more unstable and decorrelated
her channel becomes compared to that of Alice and thus,
the less likely it becomes for her signal to be accepted by
Bob as though it is from Alice. Moreover, the more Alice
moves further away from Bob, the more unstable her channel
becomes, which leads to a slight increase in the FA rate of
the ”Far” scenario. Overall, the results have demonstrated the
effectiveness of our scheme both under varying ranges of
the decision region parameter z and the trajectory of Eve.
Moreover, the results have shown that the integration of PL as
a security parameter has effectively addressed the limitations
of the existing schemes and improved the performance of PLA
in the IoV environment.

Fig. 6. Performance comparison under two trajectories of Eve.
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V. CONCLUSION

This article proposed a novel PLA approach to address
the challenges of the existing PLA schemes in the IoV
environment. We adopted GP to predict the PL of a signal
based on the relationship between the historical PL and CSI,
and then compare the predicted PL with the expected one for
authentication. We conducted simulations to demonstrate the
authentication performance of our approach through channel
attributes generated using the QuaDRiGa simulation platform.
The results of the simulations have shown that our scheme can
detect 83% of attack attempts with a false alarm rate of just
14%. Due to the scheme’s design simplicity, we believe it is
an appropriate choice to secure IoV application scenarios.
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Ibañez, “Internet of vehicles: Architecture, protocols, and
security,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 3701–3709, 2018.

[5] L. Wang and X. Liu, “Notsa: Novel obu with three-
level security architecture for internet of vehicles,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3548–3558,
2018.

[6] M. Wazid, P. Bagga, A. K. Das, S. Shetty, J. J. P. C.
Rodrigues, and Y. Park, “Akm-iov: Authenticated key
management protocol in fog computing-based internet of
vehicles deployment,” IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 8804–8817, 2019.

[7] J. McEntyre and B. Kihei, “Zero-knowledge proof for
enabling privacy-preserving electronic toll collection
with vehicle-to-everything communications,” in 2022
IEEE International Conference on Consumer Electronics
(ICCE), 2022, pp. 1–6.

[8] R. Ma, J. Cao, Y. Zhang, C. Shang, L. Xiong, and H. Li,
“A group-based multicast service authentication and data
transmission scheme for 5g-v2x,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 12, pp.
23976–23992, 2022.

[9] H. Tan, Z. Gui, and I. Chung, “A secure and efficient
certificateless authentication scheme with unsupervised

anomaly detection in vanets,” IEEE Access, vol. 6, pp.
74260–74276, 2018.

[10] M. Yang, S. Wei, R. Jiang, F. Ali, and B. Yang, “Single-
message-based cooperative authentication scheme for in-
telligent transportation systems,” Computers & Electrical
Engineering, vol. 96, p. 107390, 2021.

[11] H. Qiu, M. Qiu, and R. Lu, “Secure v2x communication
network based on intelligent pki and edge computing,”
IEEE Network, vol. 34, no. 2, pp. 172–178, 2020.

[12] S. Taha, M. Alhassany, and X. Shen, “Lightweight
handover authentication scheme for 5g-based v2x com-
munications,” in 2018 IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–6.

[13] J. Zhang, H. Zhong, J. Cui, Y. Xu, and L. Liu, “Smaka:
Secure many-to-many authentication and key agreement
scheme for vehicular networks,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 1810–
1824, 2021.

[14] H.-M. Wang and Q.-Y. Fu, “Channel-prediction-based
one-class mobile iot device authentication,” IEEE Inter-
net of Things Journal, vol. 9, no. 10, pp. 7731–7745,
2022.

[15] J. Wang, Y. Shao, Y. Ge, and R. Yu, “Physical-layer
authentication based on adaptive kalman filter for v2x
communication,” Vehicular Communications, vol. 26, p.
100281, 2020.

[16] S. Wang, K. Huang, X. Xu, Z. Zhong, and Y. Zhou, “Csi-
based physical layer authentication via deep learning,”
IEEE Wireless Communications Letters, vol. 11, no. 8,
pp. 1748–1752, 2022.

[17] A. Abdelaziz, R. Burton, F. Barickman, J. Martin, J. We-
ston, and C. E. Koksal, “Enhanced authentication based
on angle of signal arrivals,” IEEE Transactions on Vehic-
ular Technology, vol. 68, no. 5, pp. 4602–4614, 2019.

[18] J. Wang, Y. Shao, Y. Wang, Y. Ge, and R. Yu, “Physical
layer authentication based on nonlinear kalman filter for
v2x communication,” IEEE Access, vol. 8, pp. 163746–
163757, 2020.

[19] X. Yin, X. Fang, N. Zhang, P. Yang, X. Sha, and J. Qiu,
“Online learning aided adaptive multiple attribute-based
physical layer authentication in dynamic environments,”
IEEE Transactions on Network Science and Engineering,
vol. 8, no. 2, pp. 1106–1116, 2021.

[20] H. Fang, X. Wang, and L. Hanzo, “Learning-aided phys-
ical layer authentication as an intelligent process,” IEEE
Transactions on Communications, vol. 67, no. 3, pp.
2260–2273, 2019.

[21] Y. Chen, P.-H. Ho, H. Wen, S. Y. Chang, and S. Real, “On
physical-layer authentication via online transfer learn-
ing,” IEEE Internet of Things Journal, vol. 9, no. 2, pp.
1374–1385, 2022.

[22] F. Pan, Z. Pang, H. Wen, M. Luvisotto, M. Xiao, R.-
F. Liao, and J. Chen, “Threshold-free physical layer
authentication based on machine learning for industrial
wireless cps,” IEEE Transactions on Industrial Informat-
ics, vol. 15, no. 12, pp. 6481–6491, 2019.

[23] V.-L. Nguyen, P.-C. Lin, and R.-H. Hwang, “Enhancing
misbehavior detection in 5g vehicle-to-vehicle commu-



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, FEBRUARY 2023 10

nications,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 9, pp. 9417–9430, 2020.

[24] S. So, J. Petit, and D. Starobinski, “Physical layer plausi-
bility checks for misbehavior detection in v2x networks,”
in Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, ser. WiSec
’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 84–93.

[25] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro-
cesses for Machine Learning. Cambridge, MA, USA:
MIT Press, 2006.

[26] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele,
“Quadriga: A 3-d multi-cell channel model with time
evolution for enabling virtual field trials,” IEEE Trans-
actions on Antennas and Propagation, vol. 62, no. 6, pp.
3242–3256, 2014.

Mubarak Umar received his B.Sc. and M.Sc. de-
grees in Computer Science from Bayero University,
Kano, Nigeria, in 2011 and 2015, respectively, and
the Ph.D. degree in Computer Software and The-
ory from Shaanxi Normal University, China. He is
also a Lecturer with the Department of Information
Technology, Bayero University, Kano, Nigeria. He is
currently a postdoctoral researcher at the School of
Computer Science and Technology, Xidian Univer-
sity, China. His research interests include physical
layer authentication in the Internet of Vehicles (IoV)

and the Internet of Medical Things (IoMT), and information security of
wireless communication.

Jiandong Wang received his M.S. degree from
Xidian University, Xi’an, China, in 2015. He is
studying for a doctorate in the School of Computer
Science and Technology at Xidian University. His
research interests include smart cities and IoT.

Dr. Lei Liu is a full professor at the school of soft-
ware at Shandong University. He obtained his M.S.
and Ph.D. degrees in 2005 and 2010 from Bradford
University, UK, respectively. Dr. Liu has published
over 70 research papers in international conferences
and journals. His research interest includes network
performance engineering, 5g technology, quality of
service, IoT, and UAVs.

Zewei Guo received his B.S. degree in Software En-
gineering from Shanxi University, Taiyuan, China, in
2015 and his M.S. degree in Computer Technology
from Xidian University, Xi’an, China, in 2019. His
research interest focuses on covert communication.

Shuguang Wang is a senior engineer at Shandong
Institute of Standardization, No.146-6, Lishan Road,
Jinan, China. He received his B.S. and M.S. degrees
from Shandong University, Jinan, China, in 1998 and
2010, respectively. He is studying for a doctorate
in the School of Computer Science and Technology
at Xidian University. His research interests include
smart cities, cyber security, and data security.


	Introduction
	Developments and Limitations of the Existing PLA
	Our Solutions
	Contributions

	System model and preliminaries
	System Model
	Attack Model
	Gaussian Process Regression in Internet-of-Things Security

	The Proposed Signal Propagation Attribute Prediction Based Physical Layer Authentication Scheme
	Offline Training 
	CSI Data Estimation
	Path Loss Data Estimation
	GPR Model Training

	Online Authentication 

	Numerical Results
	Generation of Dataset and GPR Model Training
	Evaluation Metrics
	Performance Results and Discussions
	Overall FA and MD of the Proposed Scheme
	FA and MD of the Proposed Scheme Under Different Eve’s Trajectories


	Conclusion
	Biographies
	Mubarak Umar
	Jiandong Wang
	Dr. Lei Liu
	Zewei Guo
	Shuguang Wang


