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Abstract 
In this paper, we investigated whether affordances are activated automatically, 
independently of the context in which they are experienced, or not. The first hypothesis 
postulates that stimuli affording different actions in different contexts tend to activate all 
actions initially. The action appropriate to the current context is later selected through a 
competitive process. The second hypothesis instead postulates that only the action 
appropriate to the current context is activated. The apparent tension between these two 
alternative hypotheses constitutes an open issue since, in some cases, experimental 
evidence supports the context-independent hypothesis, while in other cases it supports 
the context-dependent hypothesis.   
To study this issue, we trained a deep neural network with stimuli in which action inputs 
co-varied systematically with visual inputs. The neural network included two separate 
pathways for encoding visual and action inputs with two hidden layers each, and then a 
common hidden layer. The training was realized through an auto-associative 
unsupervised learning algorithm and the testing was conducted by presenting only part 
of the stimulus to the neural network, to study its generative properties. 
As a result of the training process, the network formed visual-action affordances. 
Furthermore, we conducted the training process in different contexts in which the 
relation between stimuli and actions varied. The analysis of the obtained results indicates 
that the network displays both a context-dependent activation of affordances (i.e., the 
action appropriate to the current context tends to be more activated than the alternative 
action) and a competitive process that refines action selection (i.e., that increases the 
offset between the activation of the appropriate and unappropriate actions). Overall, this 
suggests that the apparent contradiction between the two hypotheses can be resolved. 
Moreover, our analysis indicates that the greater facility with which colour-action 
associations are acquired with respect to shape-action associations is because the 
representation of surface features, such as colour, tends to be more readily available for 
deeper features, such as shape. 
Our results support the feasibility of human-like affordance acquisition in artificial 
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neural networks trained using a deep learning algorithm. This model could be further 
applied to a number of robotic and applicative scenarios.  

Keywords 
Deep learning, neural network, affordance, context, action 

1. Introduction 

The ability to respond adequately to the 'invitations' that objects in the environment 
offer us is crucial to the survival of our species. In recent years, an increasing number 
of studies have focused on affordances, i.e., on objects invitations to act. Since the 
seminal work of Gibson [1], affordances have become highly interesting for recent 
research in cognitive science, cognitive neuroscience, and robotics [2], also due to 
the spread of the embodied and grounded cognition view [3]–[7]. The idea underlying 
the notion of affordances, that observing objects leads to the activation of motor 
responses, is highly appealing for embodied and grounded cognition views, according 
to which perception, action, and cognition are strictly interrelated.  
One of the most debated issues about affordances in the literature concerns their 
activation. The question is whether object affordances are automatically activated or 
only activated when relevant to the current context (i.e., to the current situation and/or 
goal). Most studies in the late ‘90s and early 2000 stressed the automaticity of 
affordances. Their goal was to demonstrate that affordances were activated 
automatically, independently of the context and task. Here is an example of a very 
influential experiment conducted by Tucker and Ellis [8]: participants were required 
to respond whether images of common objects (e.g., knife, pan) were upright or 
reversed by pressing two different keys on the keyboard. Responses were faster when 
the location of the object handle (left, right) and the location of the key to press to 
provide a response (left, right) corresponded [8]. This result suggests that participants 
were sensitive to the object's shape and the location of its parts, even if the task did 
not require paying attention to it. Similarly, another influential study showed that 
even if participants were required to respond to the object category (artefacts vs. 
natural objects), their motor responses took into account object size [9], [10].The 
developmental and neural evidence converges in highlighting the automaticity of 
affordances [11].  
The view according to which affordances are automatically activated has recently 
been challenged. Recent research has in fact started to focus on the role context plays 
in affordance activation [11]. For example, behavioural research has shown that 
object affordances are activated when objects are located in the near but not in the far 
space [12], [13]. Furthermore, the presence of multiple visual objects and different 
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task requests modulate the affordance effect on response speed [14]. Recent studies 
have shown that, depending on the context, the affordances related to object 
manipulation or function are activated [15]–[17] and have revealed the influence of 
the social context on the activation of the affordances [18]–[22]. For example, the 
presence of others modulates the activation of affordances, and this modulation might 
differ depending on whether others have a positive or negative attitude. Brain 
imaging studies revealed that motor areas are active during manipulable object 
processing, but not function related objects [23].  
Whether these two positions can come to a conciliation is currently an open issue. 
Further research concerning, for example, the time course of affordance activation is 
needed to better understand the mechanisms of affordance selection. One possibility 
is that the context selects only the relevant affordances. For example, only the 
affordances of a cup’s handle would be recruited in the context of drinking. This 
possibility is incompatible with the idea that affordances are automatically activated. 
Another possibility is that all affordances are automatically activated, and the context 
acts as a sort of “late” filter, selecting only the relevant ones. This possibility is 
compatible with the idea of automaticity of affordances. Consistent with this view, 
an influential model shows that in the brain, different affordances and action 
possibilities could compete [24], [25]. If this is the case, all affordances of the cup, 
not just the handle, should be early activated; then, in a drinking context, only the 
handle should win the competition among affordances.   
The debate we have illustrated motivates numerous recent studies. While until the 
early 2000s, most studies focused on the automaticity of affordances, recent literature 
addresses whether the characteristics of the task/context influence the activation of 
affordances. Particularly relevant to the present work are studies showing that 
affordance effects emerge solely when the task involves a deep level of processing – 
for example, when it requires processing object shape but not object colour. For 
example, Tipper, Paul, and Hayes [26] used a variation of the paradigm by Tucker 
and Ellis [8] to investigate the automatic compatibility effect found when participants 
process object shape, which is a property relevant to grasp affordances and object 
colour, which is not. They found clear affordance effects when the task required to 
process object shape but no effect when it required to process colour [27].  
The reported studies suggest that context/task modulates affordance activation. 
However, they leave some important issues unsolved. It is indeed unclear why 
affordance effects were found during shape but not during colour processing. Some 
possibilities can be devised. The results can be due to either the lower complexity of 
color compared to shape or the link between shape and grasping actions (for similar 
conclusions with a different experimental paradigm, see [28]). Both hypotheses have 
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the consequence that colour is processed more superficially compared to shape, and 
both can therefore cause the absence of the affordance effects.  
The present study aims to deepen the previously discussed issues by using neural 
networks trained to associate different objects' properties (first orientation, then 
colour and shape) to action. Performing a study with neural networks has many 
advantages. The most important in this context is that, unlike humans, neural 
networks are not biased by previous knowledge; therefore, it is possible to control 
how they learn from scratch a given association [29]. Our study has two main 
objectives. First, it aims to test whether the affordances are automatically activated, 
whether their activation is context-dependent, and whether the eventual activation of 
multiple affordances is resolved later through a competitive process [30], [31]. To 
test these different hypotheses, we trained a deep neural network to form affordances 
between a series of experienced objects and actions in two contexts in which the 
relation between the experienced object and the action depended on the object 
orientation or the object shape/colour, respectively. The second aim of the study is to 
investigate the role of the feature type (i.e., colour versus shape) in the formation of 
the new affordances and the resolution of the possible conflicts that might arise in the 
case of objects affording multiple context-dependent actions. 
The overall objective of this work is to extend our understanding of the role of 
affordance in humans. We thus use neural network and deep learning methods to 
collect synthetic data which complement the data analyzed in experimental studies. 
For related works which aim to develop effective robots without necessarily 
modelling human behaviour, see [32], [33]. For a general review of research on 
affordance in robotics, see [34]. We aim to bridge experimental data collected with 
human or primate subjects with neural network models, in which experimental data 
could be replicated and neural mechanisms underpinning them could be further 
investigated. Primary, the novelty of our work lies in demonstrating how a deep 
neural network trained from scratch would be capable of replicating interesting and 
not yet fully understood human processes such as affordances learning.  

2. Methods 

As described in the Introduction, we trained our multilayer neural network to 
associate visual objects and actions, i.e., to form stable affordances. Each visual 
object was a rectangular bar defined by three features: orientation, colour, and shape. 
Remarkably, only one of these features at a time was relevant to choose the right 
action. To simulate the learning of affordances in different contexts, we trained our 
neural network in two subsequent phases or contexts: in the first context (natural), 
the network was exposed to a series of input patterns, including a visual object and 
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the corresponding desired action based on its orientation; afterwards, in the second 
context (artificial), the same network trained in the first context was exposed to a new 
series of input patterns in which the relevant feature co-varying with the desired 
action was alternatively the colour or the shape. In such a manner, we simulated the 
passage from a real-life context, in which a visual feature of the object was physically 
and strongly linked to the afforded action, to a laboratory-like context, in which the 
correspondence between object feature and action could be arbitrarily chosen. 
The model and learning processes were implemented in MATLAB 7.10, version 
R2010a. The script was written with basic MATLAB commands, without using 
external libraries or toolbox. This software was running on a PC equipped with a Core 
i7-3770 3,4 GHz with 8 GB of DDR3 Ram. The computation was performed through 
the PC processor, without exploiting the GPU processors. With this system, model 
setup required about a minute, while each learning phase required from three to six 
hours, depending on the number of stimuli presented and epochs. 

2.1. Inputs 

Each pattern presented to the network (see Figure 1 bottom, for an example) included 
two separate inputs: a visual input, consisting of a rectangular bar presented in one out 
of two 50x50 pixels matrices sensible respectively to the red and the green, and a 
corresponding action input, consisting of a 50x4 pixel pattern presented in a 50x40 
pixels matrix. In particular, the visual input consisted of a red or green bar with an 
orientation in the range [1°, 90°]. The bar could be thin and long, from now on 
indicated as a bar with a ‘thin’ shape, with a width of 2 or 4 pixels and a height of 28 
or 30 pixels, or thick and short, from now on indicated as a bar with a ‘thick’ shape, 
with a width of 10 or 12 pixels and a height of 20 or 22 pixels. The exact values for 
the width and height of each bar were randomly extracted between each pair of 
alternatives according to its defined shape. The action input consisted of a horizontal 
white line located at a variable height. During the first training context, the location of 
the white line varied within 90 possible positions depending on the orientation of the 
visual input. During the second training context, instead, the height of the bar varied 
with the colour or shape of the visual input. Perceptual noise was simulated by flipping 
the state of 2% of randomly selected units. The input stimuli were presented to the first 
layer of the network as they were, without any further preprocessing stage. 

2.2. Neural network 

We used a deep multilayer neural network [35], including bottom-up and top-down 
connections [36]. The ability of these networks to build a hierarchy of progressively 
more complex distributed representation and to generate sensory data in addition to 
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classifying them makes these data particularly attractive for neurocognitive 
modelling [36], [37]. 
The network included one visible layer and three hierarchically organized hidden 
layers, with each couple of layers connected through bottom-up (recognition) and 
top-down (generative) weights. Visual and action information was processed within 
two separate neural pathways within the first two layers and then combined in the 
third layer.  
For the neural pathway encoding the visual information, we had two sets of red and 
green units arranged in two 50x50 matrices in the visible layer (for a total of 5000 
units), enabling the detection of the presence and position of red and green stimuli. 
The first and second hidden layers included, respectively, 500 and 250 neural units. 
For the neural pathway that encodes the action information, we had an input matrix 
of 50x40 neural units in the visible layer and 250 and 125 neural units, respectively, 
in the first and second hidden layers. Finally, the third (common) hidden layer 
included 200 neural units (see Figure 1, Top). 
This kind of neural network could be conveniently reduced to a stack of restricted 
Boltzmann machines (RBM) [38], in which a layer of feature detectors (hidden units) 
hj received weighted input xj=∑wijvi from the previous layer. The activation of each 
unit in the feature detector was computed by passing the input through the logistic 
function hj=1/(1+e−x j).  
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Figure 1. Top: The neural network architecture included a visible layer and three 
hierarchically organised hidden layers, with two separate neural pathways for 
encoding the visual and action information up to the second hidden layer. The third 
hidden layer received as input the combined output of the two pathways. The network 
layers were fully connected through both bottom-up (upward arrows) and top-down 
(downward arrows) weights. Bottom: An example of an input pattern including a thin 
red bar presented with an orientation of 45° and the corresponding action (i.e., a bar 
located halfway between the upper position, corresponding to an orientation of 1°, 
and the lower position, corresponding to an orientation of 90°). 

2.3. Learning algorithm and validation procedure 

The learning process was carried out through the unsupervised auto-associative 
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learning algorithm described in [36]. The pseudocode of the implied training 
algorithm is reported in Table 1. The connection weights were initially randomly set 
from a normal distribution (μ=0.0, σ=1) and then scaled by a factor of 0.1, and the 
neuronal biases were initially set at zero. The network was trained to generate the 
sensory data, i.e., to maximize the likelihood of reconstructing the input data, starting 
from a given state of the feature detectors and using the weights wji in a top-down 
direction. We first trained the two hidden layers in the visual neural pathways, then 
the two hidden layers in the action neural pathways, and finally the third layer. Each 
layer was trained for 200 learning epochs, and each learning epoch comprised the 
entire training set (see the next section).  
For each hidden layer to train, given an input vector vi+, the activation of the feature 
detectors hj

+ (“positive” phase) was first calculated. Starting from stochastically 
selected binary states of the feature detectors (using their state hj

+ as a probability to 
turn them on), it then inferred an input vector vi

- used in turn to reactivate the features 
detectors hj- (“negative” phase). The weights wij were updated with a small learning 
fraction ε of the difference between the input-output correlations measured in the 
positive and negative phases: Δwji =ε (v i

+hj
+− vi

-hj
-). The Δwji computed with this 

equation was then corrected considering the momentum of the previous gradient step 
η and the weight cost c. Neuron biases were also upgraded as well with ε. The 
learning parameters were as follows: ε = 0.1, η = 0.5, and c = 0.0002. All parameters 
were selected based on relevant previous papers, including this model [36]. 
The training dataset consisted of 10 input patterns for each combination of colour 
(red or green), orientation (from 1° to 90°) and shape (thin or thick), for a total of 
3640 input patterns. Each input pattern included 7000 bits that specified the state of 
the corresponding visible units (that could assume either a 1.0 or 0.0 activation state), 
of which 5000 for the visual input and 2000 for the action input. To speed up the 
training process, we divided the training set into 10 batches of 360 input patterns, 
each of which included one pattern for each combination of the three visual features.  
After training, neural network validation was performed using partial inputs instead 
of complete input patterns in the testing phase. In practice, we presented to the neural 
network either the visual stimulus only or the action stimulus only for each training 
input, and assessed the capability of the network to complete the missing part of the 
inputs by exploiting its generative abilities. The network’s responses to testing stimuli 
with missing input would be analysed and interpreted in terms of generalization of 
the learned visual-action associations. 
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Table 1. Pseudocode for the basic deep learning algorithm implied. 
1. Start 
2. Initialize the neural network: visual pathway (5000-500-250 neurons), action 

pathway (2000-250-125 neurons), and common hidden layer (500 neurons). 
3. Initialize the weights of the network randomly from a normal distribution 

(μ=0.0, σ=1) and scale them by a factor of 0.1. 
4. Initialize the bias of neurons = 0 
5. For each hidden layer in the neural network to be trained: 
6. For each training epoch: 
7. For each input vector vi+: 
8. Computed the activation of the feature detectors hj

+ (“positive” 
phase) based on vi+ 

9. Inferred an input vector vi
-  

10. Reactivate the feature detectors hj- (“negative” phase) based on vi
- 

11. Compute the difference in activation between the positive and 
negative phases. 

12. Update weights and biases 
13. Save the learned weights and biases of the trained layer. 
14. End 

3. Results 

In this section, we described the behaviour of the neural network at the end of the 
training process in a normal condition in which the network experienced the same type 
of stimuli experienced during training and in testing conditions in which the stimuli 
were manipulated to verify the generalization capability of the network. Furthermore, 
to identify the effect of learning new associations, we analysed the behaviour of the 
network at the end of the first and second training phases. For each testing condition, 
we computed the average activation overall of 100 input patterns. 
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Figure 2. Example of input and self-generated data (left and right of each column, 
respectively) obtained in the normal condition in which the network received both 
the visual and action input (panel A) and in the test condition in which the network 
received only the visual input (panel B) or the action input (panel C). 

3.1. Quality of data reconstruction and generalization 

Analyzing the behaviour of the network at the end of the first training phase under 
normal conditions, we observed that it correctly reconstructed both visual and 
action inputs and filtered out noise (see Figure 2A for exemplific cases). The 
quality of reconstructions of both visual and action input was further demonstrated 
by measuring the average activity of units coding for correct and incorrect visual 
and action stimuli (Figure 3, left panel) during the presentation of 400 stimuli 
(including 100 stimuli for each of the four possible combinations of colour and 
shapes of the bar). When the action input was missing (Figure 3, central panel), 
for the action activity, we averaged the activation of the units coding for the 
expected position of the action based on the bar orientation; while when the visual 
input was missing (Figure 3, right panel), for the bar activity, we averaged the 
activation of the units coding for the expected positions of a small (width = 2, 
height = 20) red bar and a small green bar. 
The analysis of the behaviour under test conditions, in which the network received 
only visual stimuli as input (Figure 2B and Figure 3, central panel) or only action 
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stimuli (Figure 2C and Figure 3, right panel), indicates that the network was able 
to generalize by partially regenerating also the missing stimuli. As exemplified in 
Figure 2C, when the visual stimulus was missing, and consequently the colour of 
the visual stimulus was unknown, the network tended to generate both a red and a 
green stimulus with the appropriate orientation.  
In general, these results indicated that the network was able to learn the association 
between the relevant feature of the visual input, i.e., its orientation, and the 
appropriate action. Thus, the training process led to the formation of strong 
affordances automatically elicited by the orientation of the visual stimulus. 

 

Figure 3. Average activity of the units coding for visual and action stimuli in the data 
generated by the network. Data are shown separately for the units encoding the 
position of the bar and the action, and for the remaining visual and action units. When 
an input (visual or action) was missing, we averaged the activation of the units coding 
for its expected position. Left panel: results in a normal condition in which the 
network experienced 400 input patterns, including both stimuli. Central panel: results 
obtained in a test condition in which the network experienced the same input patterns 
but in which the activation of all action units was set to 0.0. Right panel: results 
obtained in a test condition in which the network experienced the same items, but in 
which the activation of all visual units was set to 0.0. 

3.2. Learning new associations based on colour and shape 

As mentioned above, during the second training context, the network was further 
trained on stimuli in which the action correlated with the colour or with the shape 
of the visual input rather than with the visual input orientation. More specifically, 
in context 2A, the action varied according to the colour of the visual stimuli, with 
the red bars requiring a 1°-like action and the green bars requiring a 90°-like 
action, whereas, in context 2B, the action varied according to the shape of the 
visual stimuli, with thin bars requiring a 1°-like action and thick bars requiring a 
90°-like action. The orientation of the bars was randomly extracted in the range 
[1°, 90°]. During these second training contexts, the network was initialized with 
the connection weights obtained at the end of the previous training context (i.e., 
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the network previously trained in the first context was further trained in context 
2A or context 2B). The new training context involved 10 epochs, including 3600 
input patterns (i.e., 900 input patterns for each combination of colours and shapes). 
The 3600 input patterns presented during one epoch were divided into 10 batches 
of 360 units, including 90 combinations of colours and shapes. 
To analyze the course of the new learning context, we tested the network after 
each training epoch on complete and incomplete input patterns (on input patterns 
that included visual and action inputs or only visual input only). In particular, we 
tested the network with input patterns affording different actions depending on the 
context, i.e., a red bar with an orientation of 90° associated with a 90°-action in 
context 1, and with a 1°-action in context 2A. By analysing how the network 
responded to complete input patterns, we observed that it correctly reconstructed 
both stimuli belonging to the first and second learning context after one epoch of 
context 2 training (data included in Figure 7).  
More interesting, by analysing how the network reacted to incomplete stimuli that 
included visual but not action input, we observed that the network tended to 
regenerate complete stimuli that also included missing action (Figure 4). In this 
case, the network tended to generate actions that were consistent with the 
regularities experienced during the first context up to trials 4 and 9, respectively 
(in the case of context 2A and 2B, respectively) and with the regularities 
experienced during the second training context afterwards (Figure 4 top and 
bottom panel, respectively).   
In general, these data indicated that the network can extract and incorporate the 
regularities that characterized the second training context while preserving those 
that characterized the first training process. Moreover, they indicated that in the 
case of incomplete input patterns (in which the appropriate context cannot be 
inferred from the current combination of visual and action inputs), the network 
tended to respond preferentially based on the contexts characterizing recently 
experienced inputs. Finally, learning of new regularities required more training 
epochs in the case of context 2B (shape-based learning) concerning context 2A 
(colour-based learning), indicating that the acquisition of the new regularities was 
easier when such regularities concerned the colour rather than the shape. 
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Figure 4. Average action activity of the units coding for the action appropriate in the 
first (‘Correct in Orient context’) and second (‘Correct in Colour context’ or ‘Correct 
in Shape context’) context in response to incomplete input patterns after each epoch 
of training in the second context. Top panel: data obtained in the case of context 2A 
in which the new action co-varied with the colour of the visual input. Bottom panel: 
data obtained in the case of context 2B in which the new action co-varied with the 
shape of the visual input. 

3.3. Resolving conflicts between multiple afforded actions 

As reported in the previous sub-section, the neural network learned to associate 
the colour or the shape of the visual input with the action. However, it also 
continued to reconstruct the action associated with orientation even after 20 
learning epochs in the second context (as shown in Figure 4). Interestingly, the 
network showed an ability to spontaneously converge on the most plausible action 
in response to stimuli that offered different alternative actions when it was allowed 
to process each stimulus for multiple time steps. To enable the neural network to 
process information over multiple time steps, we allowed it to operate for the first 
computational step by activating the input units based on the externally provided 
information and for the further computational steps based on the self-generated 
state by the network during the previous time step. As in the previous sub-section, 
we tested the neural network during the colour-based and shape-based learning 
phases with input patterns affording two alternative actions co-varying with the 
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regularities experienced respectively during the first and during the second context 
learning phases.  
The results of these simulations are reported in Figure 5, in which the activation 
of the units that encode the two actions is plotted against the number of learning 
epochs and over three successive computational steps for both the colour-based 
learning phase (panel A) and the shape-based learning phase (panel B). As shown, 
in the first learning epochs, the neural network regenerations of the two actions 
were differentiated over time, the action appropriate in context 1 was increasingly 
activated while that appropriate in context 2 was decreasingly activated from the 
first to the third computational step. As the training progressed, this pattern 
reversed, with increasingly more activation of the action appropriate in context 2 
over time steps, while the action appropriate in context 1 had no increase in 
activity. Then, in the last training epochs, the action appropriate in context 1 even 
lost activation over time steps, especially in the colour-based learning condition 
(panel A). 
 

 

Figure 5. Average activation of the actions correlated with the first and second 
learning contexts, during three successive computational steps (shown in black, grey 
and light grey) after each of the 20 epochs of context 2 learning. These data were 
obtained by using incomplete input patterns, including only visual input. Panel A 
contrasts the results obtained in the colour-based and orientation-based learning 
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phase (context 2A and context 1), while panel B contrasts the results obtained in the 
shape-based and orientation-based learning phase (context 2B and context 1). Bottom 
panel: data obtained in the case of context 2B in which the new action co-varied with 
the shape of the visual input. 

3.4. Availability of colour versus shape representations 

As shown in Section 3.2, learning new associations between colours and actions 
was faster and better than learning new associations between shape and actions. 
One possible explanation of this effect could be that colour information was more 
readily available in the neural network after the first context learning with respect 
to shape information.  
To verify this hypothesis, we estimated to what extent stimuli of different 
orientations, colours, and shapes were differentiated in the network 
representations at the end of the first training phase. This was realized by training 
a linear neural network including two units that received and projected 
connections from and to the third hidden layer of the network. This additional 
layer was trained for 10 epochs with 3640 input patterns, including an equal 
number of visual inputs for each possible combination of two orientations (1° or 
90°), two colours (red or green), and two shapes (thin or thick) of the bar. Action 
inputs were not provided. The connection weights of the linear network were 
randomly initialized in the range [0.0, 0.1], the neuronal biases of the two neurons 
were set to zero, and the learning rate was set to ε = 0.001. Indeed, as a result of 
auto-associative training, activation of these two units can be used to roughly 
characterize in a low-dimensional space the overall distribution of the 
representation of stimuli in network modelling [36], [37]. 
As can be seen in Figure 6, the state of these two additional neurons for visual 
inputs with different colours, orientations, and shapes, visual inputs varying with 
respect to colour were much more separated in the representational space than 
visual inputs that varied with respect to shape (Figure 6 left and right panel). These 
data were confirmed by the geometric separability index analysis [39], that is, by 
the analysis of the proportion of stimuli that had as their nearest neighbour (in the 
two-dimensional space of the linear network two-dimensional space) a stimulus 
of their same category. This index, which varied between 0.5 and 1.0, 
corresponding, respectively, to randomly overlapping and fully separated 
distributions, was 0.97 in the case of visual input with different colours and 0.78 
in the case of visual input with different shapes (see Figure 6). The representations 
of different coloured visual inputs were also more separated from those of 
different orientated visual inputs (0.87). 
These results thus confirmed that the faster acquisition of colour/action 
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relationship with respect to shape/action relationship could be explained by the 
different levels of availability of categorical colour information with respect to 
categorical shape information in the network representations and that, in principle, 
the learning of colour-based actions should be easier than the learning of 
orientation-based actions. 

 

Figure 6. Geometric separability index and state of the two neurons of the linear 
neural network for visual inputs with different colours (left panel), orientation 
(middle panel), and shapes (right panel). 

3.5. Learning context-dependent associations 

In this last experimental section, we report the data obtained in a series of 
experiments in which we subjected the neural network to a training process during 
which the learning context periodically switched from context 1 (orienting-based 
learning) to context 2 (colour-based or shape-based learning). In this manner, we 
evaluated whether the neural network was able to select the action correct to the 
actual context and if the alternation between the two contexts had a cost or a 
benefit for such context-based action selection. As we did for the previous 
analysis, we tested the network reconstructions of the actions after each learning 
epoch by computing the average output activation of the units coding for the action 
appropriate to the current or to the alternative context with complete and 
incomplete input patterns (i.e., with stimuli including both the visual and action 
inputs or only the visual input).  
Figure 7 reports the output activity relative to the appropriate action in the 
orientation-based training (grey line) and the colour-based (A panel) or the shape-
based (B panel) training (black line) tested during the orientation-based training 
phase (light grey area) or the colour- and shape-based training phase (dark grey 
area). As shown, when the input patterns included the action input, the network 
regenerated only the experienced input action and did not activate at all the action 
that would be appropriate for the other context.  
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Figure 7. Actions generated by the neural networks during four consecutive learning 
phases in which the context switched from orientation-based to colour-based (panel 
A) or from orientation-based to shape-based (panel B) and vice versa, and in which 
the network was tested with complete input patterns. 

Figure 8 instead reports the same analysis performed in a case in which the 
network was tested with incomplete input patterns, in which the action input was 
missing. As already pointed out in Section 3.2, under a condition in which the 
appropriate context could not be inferred from the experienced stimulus, the 
network tended to activate both actions (i.e., the action that was appropriate for 
the orientation-based context and the action that was appropriate for the colour-
based or the shape-based context). Moreover, the network was also able to 
suppress or increase the strength of the associations through training repetitions 
based on the actual training phase context, indicating that it needed some training 
epochs to switch its preference from one learning context to the other.  
Finally, the comparison of the variation in network behaviour during the first and 
second switch from one context to another (Figure 8) indicated that the training 
time necessary to switch this preference becomes shorter during successive 
context alternations. Moreover, the difference in activation between the two 
reconstructed actions increased in the second switch from context 1 to both context 
2A and 2B, with a better reconstruction of the appropriate action and poorer 
reconstruction of the alternative one. 
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Figure 8. Actions generated by the neural networks during four consecutive learning 
phases in which the context switched from orienting-based to colour-based (panel A) 
or from orienting-based to shape-based (panel B) and vice versa, and in which the 
network was tested with incomplete input patterns, without the action input. 

4. Discussion, Opportunities, and Open Issues 

The present study allowed us to investigate the processes underlying the formation 
of affordances, i.e., of novel associations between perceptual properties (orientation, 
shape, and colour) and action. Using artificial neural networks, we were able to 
manipulate and analyse all possible variables and avoid biases induced by the 
previous knowledge of participants that inevitably affect the data collected with 
human subjects. 
Our study had two objectives: the first was to test with neural networks whether 
affordances are automatically activated or contextual dependent, and the second was 
to verify, once orientation-action associations are established, whether colour-action 
associations are easier to learn compared to shape-action associations. We will 
discuss below how the two objectives were addressed and reached.  
As to the first objective, our results have clear implications for the literature on 
affordances and the debate concerning their automaticity. They indeed suggest that 
the views according to which affordances are automatic and those according to which 
they are completely context- and task-dependent should be reconciled [11], [40]. As 
already described in the Results section, when the neural network was submitted to 
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the new learning phase, i.e., once it was trained to associate an action with colour or 
shape, the test of network reconstructions revealed that the old associations were not 
lost (see Figure 4). The average output activity of the units coding the old action 
remained substantially stable. The process occurred over time (see Figure 5). The 
pattern of these results indicates that context plays a role in affordance activation. At 
the same time, however, the results do not support the view that the context/task 
selects only the relevant affordances: the old action remained activated over time, 
even if its influence progressively decreased. Overall, our results favor the view that 
automaticity and context/task-based selection are not incompatible. All affordances, 
related to both old and new actions, are automatically activated. However, the 
context/task modulates the strength of such automatic activation, i.e., actions 
coherent with the ongoing context/task are activated stronger than actions incoherent 
or partially coherent with the ongoing context/task. Hence, the context/task seems to 
act as a sort of late filter that selects the association that is more relevant to the current 
action/goal. This is consistent with a view according to which first all object 
affordances are activated and compete with each other, and then the affordances 
relevant to the current context are recruited. So, our simulations differ from many 
previously proposed neural network models of action selection, in which the context 
causes the suppression of irrelevant visual information to block the instantiation of 
inappropriate action [30] or allows filtering affordances after their instantiation 
through a competitive mechanism [24], [41]. In our neural network simulations, the 
context/task modulates both the initial strength of the afforded action representations 
(‘early stage’) and their subsequent selection based on their actual relevance (‘late 
stage’). 
As to the second objective, our results reveal that not all contexts and tasks have the 
same impact. Consistent with our predictions, we found that learning colour-based 
associations was easier than learning shape-based associations. This result is clearly 
in line with the inspiration provided by the experimental evidence [27], although in 
the present study we investigated how learning new colour-action associations or 
shape-colour associations changed after having previously learned orientation-action 
associations. Instead, the experiments simply used tasks in which participants had to 
perform decisions on the object’s colour vs. orientation/shape. A further major 
difference between the present study and other experimental studies was that, with 
neural networks, no pre-existing bias toward the activation of a specific perceptual 
feature was present. Specifically, our results show that the pattern of activation of the 
units coding the old and new actions diverges for shape-based and color-based 
associations since the new action activation increases and the old action activation 
decreases were more pronounced for colour-based associations. Furthermore, our 
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analyses allowed us to detect the mechanisms underlying the learning ability of the 
different associations. While colour categories are separate, the distinction between 
shape categories is less marked.  
Our study had no direct technological applications, nor it was applied to robot models 
or simulated effectors. However, we showed that it would be possible to have a 
system that learns on the go new affordances as associations between a certain visual 
stimulus, a certain action, in a certain environmental situation or task. We showed 
how this plastic system could be trained both offline and online (see Section 3.5). 
Future studies could apply this neural network to robotic agents such as they would 
not only learn object-action pairs but also to conveniently select the appropriate 
affordance in a given context. While training large deep neural networks could be 
costly, maybe mixed solutions using both an offline learner for the affordances 
(object-action pairs) and then an online learner, collecting information about the 
context and selecting the best affordance in such a context. 
We used as a neural network model the one proposed by Hinton [36]. However, other 
models and learning rules could be tested with the same data, such as recurrent neural 
networks or deep convolutional networks [35], [42]. Future works could test and 
compare such alternative models to advance our understanding of human cognitive 
processes. Also, a more compelling technical implementation could be tested, relying 
on GPU processors or parallel processing. This could reduce the learning time 
required for the model and then make a robotic or other technological application of 
our work based on online computing more viable. 
Unlike most robotic or artificial neural network affordance learning (see [34]), we 
did not use a prior knowledge base or human-coded affordances. Instead, we trained 
our neural network directly with pairs of visual objects and desired actions, in 
accordance with the Gibson proposal of direct affordance perception independent of 
categorical or verbal knowledge [1]. This method allowed the development of robust 
and context-dependent affordances in terms of visual-action associations. As our 
trained neural network replicated some key characteristics of the human affordance 
system, this work could be conveniently applied to different fields in which an 
artificial platform could be requested to have such characteristics. For example, a 
revised version of our model could be applied to behaviour-based robotics, which 
relies on direct perception [43], or to human-robot interactions and educational 
contexts, in which shared affordances between humans and artificial systems would 
allow a more direct and fruitful interaction [44]. Lastly, the present model could also 
be tested in a more complex scenario in which learned affordances would be selected 
based on a specific context that changes over time [30], [45]. 
Overall, these results suggest that collecting experimental data on human subjects 
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concerning the dynamics of the process during which new associations are formed 
could significantly extend our understanding of these phenomena. More generally, 
the combined use of artificial neural network models, which can be trained from 
scratch, easily manipulated, and analysed, with experimental data, as in [46], can 
represent a powerful method to better understand how affordances are formed and 
activated. 
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