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Abstract 
This paper proposes a feature extraction method to improve the performance of shallow 

neural-network models with less number of parameters to apply especially on 

embedded system design at remote applications. Feature extraction method is designed 

using fuzzy c-means clustering based fuzzy system design cascaded a layer of symbolic 

operators and functions, respectively. During the training stage of neural-networks, 

symbolic operators and functions are selected using random-learning theory with the 

unity internal weights such that based on the prediction performance, optimal 

sequences are recorded for feature extraction to be utilized on testing phase. Extracted 

features are here used to empower the single-layer neural-network (SLNN) with 

sigmoid hyperbolic activation functions, functional-link neural- network (FLNN) with 

Chebyshev polynomials and Pi-Sigma higher-order neural-network (PSNN) with 

sigmoid activation functions, respectively. The internal and output parameters of the 

appended shallow neural-networks are optimized using batch optimization methods. 

Proposed regression models are first tested on identification of an artificial 

discrete-time dynamic system and real-time inverted pendulum then also for prediction 

of the sunspot time-series and traffic density estimation. As a result, the prediction 

Open Access

http://creativecommons.org/licenses/by/4.0/


Selami Beyhan 
 

 
 

 

DOI: 10.33969/AIS.2022040103 34 Journal of Artificial Intelligence and Systems 
 
 
 

performance of shallow neural networks is improved to be used in future applications. 

Keywords 
Symbolic regression, clustering, shallow neural-network, time-series prediction, system 
identification 

1. Introduction  

Recently, the accuracy of machine learning models have been increased through 
various feature extraction capabilities. The touchstone step has been taken with 
deep neural-networks and stochastic gradient-descent methods. Hence, recurrent 
and convolution filter based deep models can perform feature extraction for 
auto-encoding and image classification successfully. The current disadvantages of 
deep models are parameter optimization with long computational-time, repeatability 
[1] and implementation problem [2] with too many parameters. Therefore, deep 
neural-networks are mostly running on the computer-based environments. If the 
decision-making is possible to perform by connecting to the computer remotely, 
model complexity is not a problem. However, if the communication platform does 
not satisfy enough data transfer, and time-delay exists on the decision making, there 
is still required to design and utilize a simple, efficient and implementable model 
[3, 4]. 
With the development of deep structures, artificial neural-networks with less 
number of hidden layers and parameters are recalled as shallow neural-networks. 
They have less number of parameters compared to the deep structures. Thus, they 
need less computational- time for parameter optimization and less memory-space in 
the embedded system design. The approximation capability of single-layer models 
are limited when they are used in their original form. Based on this fact that feature 
extraction has long become an important discipline used by machine learning 
scientists to improve the performance of designed models. Especially with the 
increase in the application of single-layer artificial neural- networks, it has gained 
more importance. Basically, it is placed as a layer in front of the designed structure 
and the hidden features are extracted from the input data. Many feature extraction 
methods have been introduced and applied in the literature [5, 6]. 
Symbolic regression is originally known as genetic programming which is 
constructed by genetic algorithm [7] to approximate analytically all kinds of 
input-output problem such as regression, classification, clustering, decision making 
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etc. The selection of symbolic functions and design of the functional model are 
based on the genetic algorithm. Therefore, any input-output data based implicitly 
given problem can be solved using a set of analytical functions and operators. The 
combination of various functions in the nested form with analytical operators 
provides high approximation power for the applications. Simple design, accurate 
regression capability and fast implementation advantages are the main reasons to 
prefer. Recently, OLS-based genetic programming was introduced for system 
diagnosis based on regression [8]. As the value of feature extraction methods has 
increased in the last few years, symbolic regression based feature has also been 
introduced and used in modelling [9] and control studies [10] and prediction [11]. 
Recently, extreme learning machine model-based symbolic regression is introduced 
and applied for the modelling of nonlinear systems [12–14]. 
This paper proposes a fuzzy clustering and symbolic regression based feature 
extraction methodology for the efficient design of shallow artificial-neural 
networks. Single-layer artificial-neural networks (SLNN), functional-link 
neural-networks (FLNN), Pi-Sigma neural-networks (PSNN) can be accepted as 
main shallow neural networks. The main goal is to obtain accurate single-layer 
models with less number of parameters and implementable structure to be able to 
run in the remote front-end devices. At the same time, the type of symbolic 
functions are selected randomly from a predefined sets which is based on the 
extreme learning machines. In feature extraction process, different characteristics of 
the symbolic functions are used to find out qualified features. 

2. Shallow Neural-Network Models 

This section introduces basic single-layer artificial neural-network (SLNN), 
functional-link artificial neural-network (FLNN) and higher-order neural-network 
(HONN) models that are especially selected to increase their accuracy by using the 
proposed feature extraction methodology. 

2.1. Single-Layer Neural-Networks 

SLNN is the basic building block of general neural-networks. Most of the 
regression and classification problems at smooth and moderate levels can be solved 
with enough data and suitable optimization of parameters. Fundamentally, the 
parameters are optimized to learn the input-output behaviour of the problem 
therefore they imitate the learning mechanism of the human neurons.  SLNN 
model with multi-input and multi-output form is shown in Figure 1. Assume that 
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( , )x y  input-output vectors, 

 ( )T
io ww f bxy = +  (1) 

Where ,o iw w  and b  are the design parameters to optimize. The nonlinear 
function ( )f ⋅  is the activation function that is usually selected as sigmoid and 
tangent hyperbolic functions etc. The sigmoid function is ) 1/ 1( ) ( xf x e−= +  

and tangent hyperbolic function is defined as ( ) ( ) ( )  /x x x xf x e e e e− −= − +  
respectively. 
 
 
 
 
 
 
 
 
 
  
Figure 1 SLNN model 

2.2. Functional-Link Neural-Networks 

FLNN is a simple and efficient function approximator due to its implementation 
and accurate function approximation capability. Fundamentally, according to the 
function approximation theory, FLNN can represent any nonlinear function by a 
small approximation error using enough number of basis functions. In fact, FLNNs 
are similar to the SLNNs however the initial layer parameters of the FLNNs are 
unity. A multi-input single-output FLNN model is illustrated in Figure 2. The 
input-output ( , )x y  relation is given as, 

( )oy w T x=  (2) 

Where ow  is the design parameters to optimize using least-squares estimation 
(LSE) etc. A polynomial basis function ( )T ⋅  is used as the activation function of 
a FLNN. Chebyshev and Legendre polynomial basis are efficient to be used as 
activation function ( )T ⋅ . The first five functions for the Chebyshev polynomials 
of first kind are given as ( ) 2 3 4 2  1, , 2 1, 4 3 , 8 8 1T x x x x x x x 

 − +


− −


=  where as first five 
functions of Legendre polynomials are defined as 
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( ) ( ) ( ) ( )1 1 12 3 4 2  1, , 3 1 , 5 13 , 35 30  3
2 2 8

L x x x x x x x 
 − +


= −


−  respectively. 

2.3. Pi-Sigma Neural-Networks 

High-order neural networks are also single-layered ANN models, and have likewise 
fast learning capacity, strong approximation, large storage capacity, high fault 
tolerance, and accurate mapping capability [15]. Recently, a new Pi-Sigma 
neural-network has been proposed and used for the prediction of time series with 
optimization of internal weights in [16]. 
In the PSNN model, the multiplication of the linear combinations of the network 
inputs construct the output of the network. The linear combination of the network 
inputs shows the degree of the PSNN. When the problem definition is highly 
nonlinear and complex, in order to model the input-output behaviour, there is need 
a relatively large degree. The large degree of PSNN provides better prediction 
results, but needs more computational time of training due to the over-fitting. For 
standard regression data, small number of the linear combination might be enough 
for the output modelling. The PSNN model with n inputs and m outputs are 
illustrated in Figure 3. The linear combination of the inputs are calculated by 
tunable iW  parameter and biases parameter vector B  is added to calculate the 
outputs of the hidden neuron cells. The jth neuron output of the hidden-layer is 
calculated as, 

1
, 1

n

k h ik i k
i

h f W x B k H
=

 = ∑ + = … 
 

 (3) 

 

 

 

 

 

 

 

Figure 2 FLNN model 
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Figure 3 PSNN model 

Where f  hidden activation function is selected as a linear activation function as 
( )hf x x= . However, the outputs are calculated using logistic activation function 
( ) 1/ (1 exp( ))hf x x= + −  as, 

1
1

1( )
1

,
xp )

1
e (

H

k h k H
k kk

r mh f h
h=

=

= =
+ −

= …∏


 (4) 

In Figure 3, the neuron activation functions of hidden layer use linear combination 
of previous features then summation passes through a linear activation function. 
The outputs of the hidden layer neurons are multiplied to construct the output of the 
network where these outputs are passed through a nonlinear activation function 
such as logistic, tangent hyperbolic etc. The most important difference is that the 

ow  weight parameters of the PSNN are fixed constant and not trained. Input data 
of the designed models are normalized to [0,1]  interval and LSE optimization is 
used to optimize output parameters. 

3. Proposed Feature Extraction 

Proposed feature extraction has two parts such as fuzzy clustering based fuzzy 
inference and symbolic regression layers. It is considered that the modelling 
performance of shallow models can be much more improved when it is used as a 
feature extraction layer for time series prediction and system identification. 

3.1. Fuzzy Preprocessing 

The fuzzy clustering is an unsupervised learning method that provides cluster 
centres and membership values of each input data pair. Without normalization of 
the input data, the cluster centres can be found and each input will have a degree of 
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membership between [0, 1]. If fuzzy inference methods are used based on these 
membership values, there is obtained fuzzy clustering based fuzzy system design. 
Normally when the output centres of the singleton membership functions are 
determined by an optimization method, the fuzzy system design is completed. 
However, as known from the conventional fuzzy neural networks, the model can be 
enlarged to be suitable for different purposes. Therefore, in the present work, fuzzy 
system model is first continued by a symbolic regression model to be able to extract 
features then a decision layer is added as an output layer to the complete models. 
Symbolic function model is explained in next section. Fuzzy C-means clustering 
[17] determines the values of centres and corresponding memberships as, 

1

2/( 1)
1

1

( )

( )
1 ,1 1

( )
; ,

xk

k

N m
iki

N mC m iki
j

i i
k i

k j

i C c k N
x c
x c

µ
µ

µ
=

−
=

=

= ≤ ≤ = ≤ ≤
−
−

∑
∑∑

 (5) 

To optimize a cost function, 

( ) 2

1 1
,1

N C m
m ik k j

i j
J x c mµ ∞

= =
= ∑ ∑ − < <

 (6) 

Where ,1kx k N<= <=  is input value, ( )µ ⋅  is a membership function, 
,1ic i C<= <=  are the obtained centers, ,1mJ m< < ∞ cost function 

corresponding to the each m batch iteration. The iteration is ended when 
1j jU U ε+ − < , where the U  matrix is structured with memberships of input 

values. ε  is a small constant to stop clustering. Mamdani-type fuzzy rule base is 
designed based on the clustering where jth  rule is, 

𝑅𝑅𝑗𝑗 : 𝐼𝐼𝐼𝐼𝑥𝑥𝑖𝑖  is 𝐴𝐴1
𝑗𝑗  and …  and 𝑥𝑥𝑖𝑖  is 𝐴𝐴𝑀𝑀

𝑗𝑗  THEN y is 𝐵𝐵𝑗𝑗 (7) 

The fuzzy basis function vector is designed using product inference engine, 
singleton fuzzifier and center average defuzzifier as, 

( )
( )

( )
1

1 1

j
i

j
i

N

iAi
j i C N

iAj i

x
x

x

µ
φ

µ
=

= =

∏
=
∑∏

 (8) 

Cluster centres are used for Gaussian membership functions with unity 
standard-deviation as, 

( )
( )2

2
1
2

i j

j
j

i

x c

iA
x e σµ

−
−

=  (9) 
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For the ith  input data and jth  cluster centre. Fuzzy clustering based fuzzy 
system design is in fact the first feature extraction layer. Fuzzy inference transforms 
the input space to a nonlinear space with automatically found centres that provides 
to extract the hidden features according to the centre values such that each input can 
have a representation level at the output. Then, outputs of fuzzy basis functions pass 
through a symbolic function layer given in next section. 

3.2. Symbolic Regression Layer 

Symbolic regression layer has a one-hidden layer structure such that there is an 
analytical operator and function randomly chosen in the training step. These 
analytical operators and functions have very different characteristics taken from a 
predefined sets. Main difference of the proposed symbolic regression layer from the 
conventional symbolic regression is that the analytical operators and functions are 
determined randomly from predefined sets not using genetic algorithm etc. The 
second difference is that the structure of the symbolic regression is fixed here but 
conventional symbolic regression has too much nested operators and functions. The 
symbolic regression layer is here only provides features but these features passes 
through a decision layer. The output parameters are optimized by one-step 
estimation method. Therefore, optimal regression model is obtained with less 
complex structure with optimal estimated parameters. In addition, the random 
selection of operators and functions provides unbiased features at each training step. 

Table 1. Some operators and functions 

Operator Function 
+  2x  

−  x  

×  cos( )x  

)1,( 2min x x  tanh( )x  

)m x(a 1, 2x x  1/ (1 )xe−+  

)m d(o 1, 2x x  max{0, }x  
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3.3. Design of Shallow Networks with Feature Extraction 

The proposed feature extraction is located in front of the SLNN and FLNN models. 
The fuzzy clustering and fuzzy design parts are performed and initial features 
extracted at one step. However, the optimal design analytical operators and 
functions are based on the random learning theory. The type of operator between 
two inputs and the symbolic function that they passed through are determined 
randomly then the features are extracted using the training data. After that the 
network parameters are optimized. The SLNN model needs to design both input 
and output layer parameter where input layer are parameters are non-linearly 
formulated therefore complete set of parameters are optimized using 
Levenberg-Marquardt optimization. However, FLNN model has only output 
parameters to design therefore LSE method is used to optimize. 

Algorithm 1 Design of shallow networks with feature extraction. 
1: Begin: Training 
2: Find: cluster centres using fuzzy clustering 
3: Design: fuzzy system using Gaussian MFs 
4: Construct: first feature matrix 
5: for Number of random trials do 
6:  Select: random operators and functions 
7:  Construct: second feature matrix 
8: while up to stopping criterian do 
9:    -LM optimization: SLNN and PSNN design 
10:    -LSE method: FLNN design 
11: end while 
12: Record: MSE and optimized network parameters 
13: end for 
14: Find: optimal MSE values 
15: Save: optimal symbolic operators and functions, and parameters 
16: End: Training 
17: 
18: Begin: Testing 
19: Construct: first feature matrix via cluster centres and fuzzy system 
20: Construct: second feature matrix via optimal operators and functions 
21: Obtain: output values with optimized network parameters 
22: Record: testing MSE values. 
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23: End: Testing 

4. Computational Results 

The advantages of proposed feature extraction method is presented with various 
application results. An artificial nonlinear system and inverted pendulum output 
identification are achieved as identification applications, respectively. In the 
regression part, sunspot time series prediction and traffic density estimation are 
performed for the time-series prediction. Prediction of sunspot time series and 
traffic flow estimation are relatively difficult problems due to the unpredictable or 
fast change of the dynamics. However, input-output data of the system 
identification problem is produced from a casual and deterministic system, 
therefore it is relatively easy problem. However, testing parts have different 
dynamics that makes difficult to predict future behaviour. The performance results 
with and without the feature extraction method are given in Table 2 and in Table 3, 
respectively. MATLAB software is used for designing and producing the 
application results of the proposed methods. For identification, the models are 
assumed as nonlinear auto-regressive moving average with exogenous input 
(NARMAX) form )ˆ( ) ( ( ), ( 1)y k Model u k y k= − , whereas for time series 
prediction in NARMA form as ( ) ( ( 1), ( 2))ŷ k Model y k y k= − −  where two 
passed values are used for one-step ahead predictions. 

4.1. Nonlinear Dynamic System Identification 

Identification of nonlinear systems is crucial problem for the control theory. The 
prediction of unknown system behaviour is used to monitor unmeasured dynamics 
and may also be used to produce a suitable control signal in predictive manner. In 
literature, there are many benchmark datasets for testing and comparing the 
developed models. The mathematical dynamics of a nonlinear, dynamic, casual, 
discrete-time and time-delayed system are given as, 

 2 / 300

0.4 0.9 2.

2

3 1.2 2

1.3

( ) ( ),

( ) ( ( )) ( ( )) ( ( )) ( ( ))( ),

( ) ( ( )) )2 0

0

( ( )) ( ( )) ( ( ))( ,

( ) ( ) ( ),

(

9.6 0. 2.5

  .35 1

  ) ( ) ( )

u k sin k

x k sin u k cos u k sin u k cos u k training

x k cos u k sin u k cos u k sin u k testing

q k x k D q k

y k q k q k

π=

= + −

= − +

= − + −

= +

 (10)  
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Where (u(k), y(k)) is the input-output pair and (x(k), q(k)) are internal dynamics of 
the system where D is the time delay of the internal dynamics. The difficulty comes 
with time delay D and different behaviour of internal dynamics in the training and 
testing parts. 

Figure 4 presents the identification results corresponding to the training and testing 
data sets. The data sets are produced by using Eq. (10). In fact, this nonlinear 
system is one of the benchmark systems such that it was already utilized in [18] 
where the test performance obtained as 2.2e-4MSE or 14.8e-3RMSE. As given in 
Table 2, the RMSE performance is also improved by using FLNN model. 

 
Figure 4 Identification of a nonlinear dynamic system 

 
 
 
 
 
 
 
 
 
 
 
Figure 5. Inverted pendulum system 

4.2. Inverted Pendulum Identification 

The control of inverted pendulum is also one of the benchmark problems due to the 
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nonlinear and unstable dynamics [19]. A suitable control voltage is applied to the 
chart table to hold the pendulum end-effector to the up-right position. Experimental 
system and applied control voltage are seen in Figure 5. Designed models are used 
to approximate the input output relationship of the pendulum so that pendulum 
dynamics are assumed as unknown. The past values of control voltages and angle 
positions are used as inputs of the models but future values of the angle positions 
are used the output of the designed models. The input-output data is produced from 
the experimental system that is used in control laboratory for testing the control 
approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Identification of an inverted pendulum 
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Figure 7 Prediction of sunspot time series 
4.3. Sunspot Prediction 

Sunspot data is one of the well-known benchmark datasets [20]. It is one of the 
benchmark time-series data to predict since there is no any input-output relationship 
for the future values. From 1749 to 2021, there exist 3265 sunspot data which is 
monthly recorded. 2500 values of the time series data is used for training the 
designed models whereas remaining 765 of the data is used for testing. Prediction 
results are shown in Figure 7, respectively. 
Figure 7(a) and Figure 7(c) represents the training data predictions. Due to the large 
number of the data in Figure 7(a), a part of the data is detailed in Figure 7(c). The 
comparative results of the models are given in the tables. The sunspot time series 
data is downloaded from a public site. 

4.4. Traffic Flow Density Prediction 

Traffic flow or density estimation has recently become an important problem of the 
crowded cities. Based on the accurate prediction of traffic density, the traffic 
signalization can be automated instantaneously. Fine automatization of the traffic 
lights enhance the quality of people and reduce the energy consumption in general. 
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Even though the data has a periodicity, the magnitude of the density at periods 
varies in a highly nonlinear form. There are numerous unpredictable reasons that 
traffic density can vary everyday at the same traffic lights. The traffic density data 
is also downloaded from a public site. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Prediction of traffic flow density 

Figure 8 presents the predictions of traffic density results. Figure 8(a) and Figure 
8(c) show training data predictions where some parts of the data zoomed in to 
examine the application results in detail. Figure 8(b) and Figure 8(d) illustrate the 
prediction results of testing data. 

5. Discussion and Conclusion 

In this study, a new feature extraction method is proposed for better approximation 
of shallow neural-network models for the system identification and regression. In 
general, we can say that the method is successful by looking at the performance 
results. However, as with all developed methods, we can criticize the advantages 
and disadvantages of this method from different perspectives. The proposed feature 
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extraction methodology can be evaluated using the design steps, the computational 
load and the performance results. 

First of all, the proposed feature extraction method consists of known and novel 
parts. The known part is the fuzzy inference part based on fuzzy clustering, the 
proposed part is a new symbolic regression layer. Here, it is seen that the symbolic 
regression part is designed differently based on the studies in the literature. The 
symbolic regression part is based on the random learning method as in extreme 
learning machines, unlike the symbolic regression methods in the literature. The 
random learning method has made many of regression methods very successful so 
that the symbolic regression part is designed based on random learning. The fuzzy 
inference part is obtained by data clustering and passing through Gauss membership 
functions in cases where the data is unknown. The symbolic regression part is the 
extraction of features with the help of randomly assigned operators and functions 
based on a batch learning. These features will then be applied as an input to the 
appended shallow neural-network model. Therefore, a two-stage approximation 
method is proposed. If the proposed method is criticized in terms of computational 
load, as expected, a little more time is required for the design compared to the 
methods designed in one step in the literature. But even with low computer 
configuration this is only in the order of seconds and minutes. If we compare it with 
the deep learning methods in the literature, which take a long time, the design is 
completed in a much shorter time. In terms of performance, it is observed that there 
is a dramatic performance change in the shallow models designed with feature 
extraction and in cases where it is not. For some data, it was observed that the 
performance did not increase much. This can be considered by considering the data 
and the shallow model. In general, the advantage of the developed method can be 
said that the regression performance increases significantly, as well as the 
disadvantage that the computational load increases compared to one-step designs. 

Table 2. Performance of models with feature extraction 

Method/RMSE Dynamic System 
Identification 

Inverted Pendulum 
Identification 

Sunspot 
Prediction 

Traffic Density 
Estimation 

SLNN 20.6e-3 
88.7s 

6.9e-3 
123.2s 

16.88(4.23%) 
352.7s 

3.00(4.29%) 
218.8s 

FLNN 8.1e-3 
11.40s 

2.0e-3 
63.90s 

16.81(4.21%) 
53.06s 

2.8(4.0%) 
122.2s 

PSNN 91e-3 
43.06s 

78e-3 
153.1 

16.89(4.23%) 
161.06 

3.00(4.29%) 
101.4 
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Table 3. Performance of models without feature extraction 

Method/RMSE Dynamic System 
Identification 

Inverted Pendulum 
Identification 

Sunspot 
Prediction 

Traffic Density 
Estimation 

SLNN 34.8e-3 
4.05s 

7.2e-3 
37.34s 

17.02 (4.27%) 
77.7s 

3.37 (4.8%) 
146.4s 

FLNN 24.6e-3 
0.062s 

4.61e-3 
0.31s 

16.93 (4.25%) 
0.058s 

5.81 (8.3%) 
0.070s 

PSNN 0.13 
1.66s 

0.10 
51.07s 

17.43 (4.84%) 
39.26 

4.5 (6.42%) 
24.81s 

In general, these shallow neural-networks are simple models for the difficult 
regression or identification problems. Therefore, in this paper, the main purpose is 
to improve their performance to be able to apply in the industry not to compare with 
advanced models. Anyone in this field can use and improve the performance of 
their much advanced models. It is also expected that different versions of the 
proposed feature extraction method will be conveniently used in the prediction of 
different regression problems. 
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