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The nonlinear distortions resulting from the radio frequency (RF) impairments such as frequency offset, I/Q-imbalance, phase
noise, and quantization errors. The hardware impairments severely degrade signal reception performance in NB-IoT systems and
hence estimation for hardware impairments is necessary and mitigated by compensation algorithms. To this end, this paper focuses
on the problem of estimating channel gains and frequency offsets in an NB-IoT system. Specifically, we first separate channel gains
and frequency offsets and derive the analytical expressions of interest, based on the maximum likelihood estimation; We derive the
expectation-maximization algorithm and apply it to the NB-IoT system for solving joint estimation of frequency offsets and channel
gains; We carry out extensive simulations to illustrate that how systems parameters (e.g., channel phase difference, frequency offset
difference, SNR, the number of sampling) can affect estimation performance.

Index Terms—Narrowband–Internet of Things (NB-IoT), channel gain, frequency offset, Craḿe-Rao Bound (CRB).

I. INTRODUCTION

THE Internet of Things (IoT) aims at connecting different

kinds of objects to the Internet, which is widely applied

to in many fields such as e-health care, monitor environments,

smart home, smart mobility, and so on [1]. The number and

variety of IoT devices have rapidly increased in recent years,

for a predictable future of over 60 billions IoT devices access

to the Internet by 2025 [2]. Lots of IoT devices are connected

by using short-range communication technologies, such as

Zigbee, RFID, Bluetooth, and so on. Recent, narrowband IoT

(NB-IoT) has been attracted for serving as a low-power wide-

area networks (LPWAN) communication standard to achieve

interconnection between IoT devices requiring small data

volume amounts, low bandwidth, and long battery life [3].

The development of NB-IoT greatly promotes the application

of intelligent IoTs, making eligible IoT equipments access

to 5G, 6G and beyond networks securely. In addition, NB-

IoT exhibits important advantages to provide numerous device

connections, information security exchange, highly dynamic

device joining/leaving the network, more wide application

scenarios.

It is noticed, however that these NB-IoT advantages depend

on accurate channel state information and frequency offset to

allow for information recovery. Similar to other wideband-

based techniques, NB-IoT system is significantly sensitive

to frequency offsets induced by oscillator mismatches and/or

Doppler shifts. It is proved that a small frequency offset leads

to severe degradation in modulation due to suffering from

inter-carrier interference and attenuates the desired signal [4].

This will reduce the effective signal-to-noise ratio (SNR) for

signal reception and thus degrades NB-IoT system perfor-

mance. Therefore, it is necessary to estimate the channel gains

and the frequency offsets and then compensates for them for

NB-IoT system performance impairment. Joint estimation of

channel gains and the frequency offsets for NB-IoT system
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needs to be unexplored. The objective of this paper is to fill

this gap.

Recently, many works have devoted to estimating chan-

nels and/or frequency offsets [5]–[7]. The authors in [8]

comprehensively explore the problem of joint estimation of

the frequency offsets and channels in multi-input multi-

output (MIMO) systems using a training sequence, and they

analytically derive Craḿe-Rao Bound (CRB) in terms of

frequency offsets and channels under maximum likelihood

estimator (MLE). In order to reduce the difficulty of n-

dimensional maximization problem, the authors in [9] propose

two computationally efficient iterative estimation algorithms

for joint channel and frequency offset estimation in MIMO

systems, namely expectation conditional maximization and

space-alternating generalized expectation-maximization. Nu-

merical results illustrate that the proposed two algorithms can

achieve the CRB. The authors in [10] focus on joint carrier

frequency offset (CFO) and channel estimation in multiuser

MIMO orthogonal frequency-division multiplexing (OFDM)

systems, and also design optimal training sequences mini-

mizing the CRBs for CFO and channel. Taking into account

high-mobility situations MIMO-OFDM access systems [11],

two novel approaches for joint CFO and doubly selective

channel estimation are developed based on Schmidt–Kalman

filtering (SKF) and simulation results demonstrate that the

highly increase the mean-square error performance. Channel

and CFO estimation at millimeter wave carrier frequencies

faces large challenging.

By using a low dimensional equivalent channel matrix, the

authors in [12] develop a new approach to estimate the CFO

with power amplifier impairment in the time domain in the

hybrid mmWave MIMO OFDM systems. Then, by utilizing

the sparse nature of mmWave channels in the angle-delay

domain and compressibility of the phase error vector, a method

for joint CFO and wideband channel estimation algorithm is

designed in one-bit receivers in [13]. To overcome the two

successive beacons problems, the authors in [14] CFO-robust

compressive scanning path-tracking algorithm is presented to

enhance the path tracking efficiency of mmWave systems.
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These existing approaches mainly focus on MINO, MINO

OFDM, and mmWave MINO systems and can not be extended

to NB-IoT systems due to different hardware architectures.

To comprehensively solve the problem of joint estimation of

CFO and channel gains, this paper focuses on exploring joint

estimation of CFO and channel gains for NB-IoT systems. The

main contributions of this paper are summarized as follows:

• Through statistic signal analysis theory, we first use the

separable model to extract channel gain and frequency

offset, derive the analytical expressions for channel gain

and frequency offset estimation in a NB-IoT system, and

then we present CRB for the two estimation, based on

the maximum likelihood estimation.

• With the help of tool for signal separable model, we

derive the expectation–maximization algorithm and apply

it to the NB-IoT system for solving the ML problem in

terms of joint estimation of frequency offsets and channel

gains.

• Through extensive simulations, we further examine how

systems parameters (e.g., channel phase difference, fre-

quency offset difference, SNR, the number of sampling)

can affect estimation performance. In addition, we also

illustrate that the efficiency of expectation–maximization

algorithm for estimating frequency offsets and channel

gains the NB-IoT system.

The rest of the paper is organized as follows. Section II gives

system model. Section III presents CRB for the estimation

parameters. The joint estimation algorithm is presented in

Section IV. Finally, Section VI concludes this paper.

Notation: (·)∗, (·)T , and (·)H denote conjugate, transpose,

and conjugate transpose operators, respectively. | · | denotes

absolute value operator. ‖x‖ denotes L2-norm of a vector x.

C
M×N represents the set of complex-valued M×N matrices.

A circularly symmetric complex Gaussian random vector x

with zero mean and covariance matrix C can be denoted

by x ∼ CN (0,C). E{·} and f(·) represent expectation and

probability operators, respectively.

II. SYSTEM MODEL

We consider a flat and block-fading NB-IoT system with an

M -antenna base station transmitting data streams to a single-

antennan NB-IoT device. It is noticed that the received signals

always suffer from being distorted by frequency offsets caused

by mobility-induced Doppler frequency shift and oscillator

mismatch. Therefore, in the presence of frequency offsets

the discrete-time baseband received signal model under K
observation can be expressed by

y(k) =

M
∑

m=1

hmejwmksm(k) + n(k), k = 1, 2, ...,K. (1)

• sm(k) is the kth sample symbol that corresponds to the

mth transmit antenna and consists of both pilots (known)

and data symbols;

• hm denotes the baseband complex channel coefficient

from the mth transmit antenna at the base station to

the receive antenna at IoT device. We assume that {hm}

are deterministic unknown and remain constant over the

interval [1, 2, ...,K];
• wm is the carrier frequency offset from the mth transmit

antenna at the base station to the receive antenna at IoT

device. wm does not change over the interval [1, 2, ...,K]
but varies randomly over blocks in time;

• n(k) is the zero-mean complex additive white Gaussian

noise (AWGN) with variance σ2
n, i.e., n(k) ∼ CN (0, σ2

n).

The objective of this paper is to jointly estimate channels

and frequency offsets. Here {sm(k)}Kk=1 are repeatedly used

and publicly known. If we define:

• y = [y(1) y(2) · · · y(K)]T ;

• h̃ = [h1 h2 · · · hM ]T ;

• w = [w1 w2 · · · wM ]T ;

• xm = [xm(1) xm(2) · · · xm(K)]T ;

• em = [ejwm ej2wm · · · ejKwm ]T ;

Then the received signal vector y given in (1) can be expressed

as

y =

M
∑

m=1

(xm ⊙ em)hm + n

=

M
∑

m=1

x(wm)hm + n

= X(w)h̃+ n, (2)

where n = [n(1) n(2) · · · n(K)]T ∼ CN (0,R); x(wm) =
xm ⊙ em ∈ C

K×1; X(w) = [x(w1) x(w2) · · · x(wM )] ∈
C

K×M .

III. DERIVATION OF CRAḾE-RAO BOUND

In this section, we derive the analytical expressions for

channel gain and frequency offset estimation, and then we

present CRB for the two estimation.

From (2), we know that y is complex observation vector

due to the parameters h, h and n, and then y is distributed as

y ∼ CN (X(w)h̃,R). (3)

where R = σ2
nRn. Hence, the probability of the observations

is

f(y|w, h̃) =
1

πK det(R)

exp
{

−[Y −X(w)h̃]HR−1[Y −X(w)h̃]
}

.

(4)

and the log-likelihood function is

l(w, h̃;y) = −[Y −X(w)h̃]HR−1[Y −X(w)h] + ς, (5)

where ς does not rely on the parameters to be estimate.

By differentiating l(w, h̃;y) in (5) and setting the result

equal to zero, we can obtain the estimate h̃ as

ˆ̃
h(y,w) = [XH(w)X(w)]−1XH(w)y = X†(w)y, (6)
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where X†(w) = [XH(w)X(w)]−1XH(w) is Moore-Penrose

pseudo-inverse. Then substituting (6) into (5) yields a com-

pressed log-likelihood function for w:

l(w;y)

= −[y −X(w)X†(w)y]HR−1[y −X(w)X†(w)y] + ς,
(7)

Combining (6) and (7), we find that the projection matrix onto

the signal subspace defined by X(w) is expressed as

PX(w) , X(w)[XH(w)X(w)]−1XH(w). (8)

Based on (8), (7) becomes

l(w;y) = −[y −PX(w)y]
HR−1[y −PX(w)y] + ς

= −[P⊥
X(w)y]

HR−1[P⊥
X(w)y] + ς, (9)

where P⊥
X(w) denotes the orthogonal projection matrix of

PX(w) that does not contain X(w).
By maximizing l(w;y) in (9), we can obtain the ML

estimate of w as

ŵ = argmax
w

{

[P⊥
X(w)y]

HR−1[P⊥
X(w)y]

}

. (10)

When we acquire the estimate of ŵ, we substitute it back

into (6) to get ĥ, that is,

ˆ̃
h(y) = X†(ŵ)y. (11)

In order to derive the CRB, we define h as a real 2M vector

form:

h , [ℜ(h)T ℑ(h)T ]T . (12)

Using the ML estimate theory, the Fisher information matrix

with respect to JF(h), JF(h,w), JF(w,h) and JF(w) is

expressed as

JF(h) =

[

JF(h) JF(h,w)
JF(w,h) JF(w)

]

. (13)

Then the Fisher information matrix for h is given by

JF(h) =

[

JF(ℜ(h)) JF(ℜ(h),ℑ(h))
JF(ℑ(h),ℜ(h)) JF(ℑ(h)).

]

(14)

Based on [15], we have

JF(ℜ(h)) = 2ℜ[XH(w)R−1X(w)], (15)

JF(ℜ(h),ℑ(h)) = 2ℜ[XH(w)R−1(jX(w))]

= −2ℑ[XH(w)R−1X(w)]. (16)

JF(ℑ(h)) = 2ℜ[(−jX(w))HR−1(jX(w))]

= 2ℜ[XH(w)R−1X(w)], (17)

JF(ℑ(h),ℜ(h)) = 2ℜ[XH(w)R−1(X(w))]. (18)

Substituting JF(ℜ(h)), JF(ℜ(h),ℑ(h)), JF(ℑ(h)) and

JF(ℑ(h),ℜ(h)) into (14), we can obtain JF(h) as

JF(h) =
[

2ℜ[XH(w)R−1X(w)] −2ℑ[XH(w)R−1X(w)]
2ℑ[XH(w)R−1X(w)] 2ℜ[XH(w)R−1X(w)]

]

(19)

Following a similar manner, JF(h,w) and JF(w) are

calculated respectively as,

JF(h,w) =

[

2ℜ[XH(w)R−1Z(w)Λ]
2ℑ[XH(w)R−1Z(w)Λ]

]

(20)

JF(w) =
[

2ℜ[ΛHZH(w)Z(w)Λ]
]

(21)

where

Z(w) ,

[

∂x(w1)

∂w1

∂x(w2)

∂w2
· · ·

∂x(wM )

∂wM

]

(22)

Λ , diag(h̃) =











h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...

0 0 · · · hM











. (23)

By exploiting the formulation for the inverse of a partitioned

matrix in [15], we can obtain the CRB for w as

CRB(w) =
1

2

[

JF(w)− JF(w,h)JF(h)
−1JF(h,w)−1

]−1

=
[

ℜ[Υ⊙HT ]
]−1

, (24)

where

Υ , ZH(w)P⊥
X(w)R

−1P⊥
X(w)Z(w), (25)

H , hhH . (26)

Based on (24) and the formulation for the inverse of a

partitioned matrix in [15], we can also readily derive the CRB

for h̃ as

CRB(h̃) =
[

JF(h)− JF(h,w)JF(w)−1JF(w,h)−1
]−1

= XH(w)R−1X(w)

+X†(w)Z(w) [CRB(w)⊙H]ZH(w)(X†(w))H

(27)

Now, it is observed that the CRB for the estimation of h and

w is governed by all hms through the diagonal matrix defined

in (23). On the other hand, it also relies on the differences

wi − wk.

IV. PROPOSED JOINT ESTIMATION FOR CHANNEL AND

FREQUENCY OFFSETS

In this section, we present the expectation–maximization

(EM) algorithm for joint estimation of channels and frequency

offsets algorithm in an NB-IoT system.

From the received signal given in (2), we know that the

parameters to be estimate include the M × 1 real vector w

and M × 1 complex vector h̃. Hence, we define

ν , [wT h̃T ]T . (28)

It is seen from (5) that if we discard constant terms and scale

factors, the log-likelihood function in (5) will become

l(ν;y) = −[y −X(w)h̃]HR−1[y −X(w)h], (29)

We know that the observation y is a incomplete data. In order

to achieve a better estimate accuracy, we should choose the
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complete data, so it is necessary to use the observation of

each component of X(w)h̃ by itself in the presence of noise.

Therefor, according to (2), we have

ym = x(wm)hm + nm,m = 1, 2, ...,M. (30)

with

E{nmnH
m} = αmR, (31)

and

M
∑

m=1

αm = 1 (32)

Indeed, for simplicity we can define

αm =
1

M
. (33)

The observation y is readily expressed as

y =

M
∑

m=1

ym

, Φ











y1

y2

...

yM











. (34)

where Φ[· · · ] denotes a many-to-one (noninvertible) linear

transformation and then y and ym are jointly Gaussian.

Here we denote the estimate of ν at step i of the iteration

by ν̂
(i). If yms were available, we would maximize l(ν;y)

given in (29). Since only y is obtained, we resort to determine

the expectation of l(ν;y), under given the observation y

and the current parameter estimate ν̂
(i). If we define the

resulting expectation by V (ν; ν̂(i)), and then the conditional

expectation with respect to y and ν̂
(i) is given by

V (ν; ν̂(i)) = V (ŵ, ˆ̃h; ŵ(i), ˆ̃h
(i)

)

, E{ln f(ym : ŵ, ˆ̃h|y, ŵ(i), ˆ̃h
(i)

))}. (35)

Discarding constant terms and scalar factors, the log-likelihood

function can be simplified to

l(ν;y) = −
M
∑

m=1

[ym − x(w)mhm]HR−1[ym − x(w)mhm],

(36)

According to [15], we notice that assessing (35) reduces

to finding the conditional mean. We utilize Bayes criterion

to obtain f(ym|y) from f(y|ym) and find the mean by

inspection,

ŷ(i)
m = x(ŵm)(i)ĥ(i)

m +
1

M

[

y −X(ŵ)
(i)
ĥ(i)

]

. (37)

or

ŷ(i)
m − x(ŵm)(i)ĥ(i)

m =
1

M

[

y −X(ŵ)
(i)
ĥ(i)

]

. (38)

This is called the expectation step.
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Fig. 1. Impact of the channel phase difference on CRB for frequency offset.

The next step is to maximize V (ν; ν̂(i)) with respect to

ν̂
(i). The resulting estimate is ν̂

(i+1) and then we have

ν̂
(i+1) = argmax

ν

{

V (ν; ν̂(i))
}

. (39)

According to (39), we obtain the estimate of w and h̃ as

ŵ = argmax
w

{

[XH(w)R−1XH(w)]−1XH(w)R−1y
}

.

(40)

and

ˆ̃
h = X†(ŵ)y. (41)

The corresponding one-dimensional relation for the complete

data is

ŵ(i+1)
m

= argmax
wm

{

[xH(wm)R−1XH(wm)]−1XH(w)mR−1ŷ−1
m

}

.

(42)

and the one-dimensional version of (41) is

ˆ̃
h(i+1)
m = x†(ŵ(i+1)

m )ŷ(i). (43)

V. NUMERICAL RESULTS

A. System Parameters and Simulation Settings

In our simulation, the number of transmitter and receiver

antennas is set to 2 and 1, respectively. We adopt phase-

modulated (QPSK) signals generated for pilot symbols. The

frequency offsets between the transmitter and receive antennas

are set to w = [w1, w2]
T and w1, w2 ∈ 2π[0, 0.3]. The

channels are followed by using zero-mean complex Gaussian

distribution with variance 1, and the channels h̃ = [h1 h2]
T=

[0.1074 − 0.9303i 0.2929 + 0.5169i]T . The additive noise

is the zero-mean complex Gaussian distributed with variance

σ2
n, where we set σ2

n = 1/SNR with SNR representing the

signal-to-noise ratio. We denote the channel phase difference

by ∆θ and frequency offset difference by ∆w.
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Fig. 2. CRB(ω) versus the frequency separation.

B. Performance Analysis

First, we investigate how the CRB for frequency offset

varies with the channel phase difference. To this end, we pro-

vide plots of the CRB for the frequency offset vs. the channel

phase difference in Fig. 1 with the setting of SNR=0 dB, N =
10, and three frequency offsets ∆w ∈ {0.1π, 0.2π, 0.3π}, ∆θ
varying from πtoπ. Also, we plot the CRB for estimating

wm for m = 1, 2 (the CRBs for w1 and w2 are identical).

We can see from Fig. 1 that the CRB for estimating wm

remains constant, indicating that the CRB for estimating wm

is not affected by the variation of channel phase difference. We

also observe from Fig. 1 that we have the best the CRBs for

∆w = 0.1π or ∆w = 0.3π when the channel phase difference

∆θ = ∠(Υ1,2)± π/2, where Υ1,2 is the upper right entry in

the Υ given in (25). We have the weakest CRBs under this

case when ∆θ = ∠(Υ1,2) ± π. However, when ∆w = 0.2π,

the opposite is true.

Next, we examine how the frequency separation affects

the CRB(ω). In Fig. 2, we present the results that CRB(ω)

versus the frequency separation with the setting of SNR=0

dB, N = 10, and three channel phase ∆θ ∈ {∠(Υ1,2) ±
π,∠(Υ1,2) ± π/4,∠(Υ1,2) ± π/2}, ∆w varying from 0toπ.

It is seen from Fig. 2 that the CRB for estimating wm is

not affected by the variation of frequency separation. As

shown in Fig. 2, the best CRB(ω) performance occurs when

∆θ = ∠(Υ1,2) ± π/2, while the worst CRB(ω) performance

occurs when ∆θ = ∠(Υ1,2)±π. This reveals that the channel

phase separation ∆θ seriously affects CRB(ω) performance

as ∆w reduces. Another important observation from Fig. 2

is that when the frequency separation reduces, the two-signal

CRB will be much larger than the single-signal case, so that

it is harder to estimate the frequencies the closer they are.

Now, we explore the impact of SNR on CRB(ω) perfor-

mance. In Fig. 3 and Fig. 6, we present the plots of CRB(ω)

vs. SNR under different ∆θ, N , ∆w. We can see from Fig. 3

and Fig. 6 that the estimation performance of the ML estimator

for w gradually decreases as SNR increases. These four

figures also exhibits that for a given SNR, the best CRB(ω)

performance occurs when ∆θ = ∠(Υ1,2) ± π/2, and the

worst CRB(ω) performance occurs when ∆θ = ∠(Υ1,2)± π.
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Comparing with Fig. 3 and Fig. 4, we find that for a fixed

∆w = 0.3π, the value of N has a significant impact on the

CRB(ω) performance. More precisely, when ∆w = 0.3π and

N = 10, the estimation performance of the ML estimator for

w is not sensitive to the change of ∆θ while when ∆w = 0.3π
and N = 5, the estimation performance exhibits disperse under

different ∆θ. In addition, one can see from Fig. 5 and Fig. 6

that for ∆w = 0.1π case, the estimation performance of the

ML estimator for w is very sensitive to the change of ∆θ.

Then, we show that the impact of SNR on CRB(h) per-

formance. To this end, we plot in Fig. 7 and Fig. 8 CRB(h)

vs. SNR under different ∆θ, N = 10, ∆w. From the two

figures, we can see that the estimation performance of the ML

estimator for h gradually decreases as SNR increases. It is

notable that for a given N , the value of ∆w severely affects

CRB(h) performance. In particular, when ∆w = 0.3π, the

estimation performance of the ML estimator for h tends to

single h estimation performance, shows a better performance,

and is not related to the value of ∆θ. Moreover, we show in

Fig. 9 that estimation algorithm convergence for estimating

two ω. Fig. 9 illustrates that the estimation algorithm takes

ten iterations to converge estimating two ω.

Finally, it demonstrates in Fig. 10 that frequency offset esti-

mation Root Mean Square Error (RMSE) versus SNR for 2D
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Fig. 6. CRB(ω) vs. SNR under different ∆θ, N = 10, ∆w = 0.1π.

maximization using EM algorithm under ∆θ = ∠(Υ1,2)± π,

N = 10, ∆w = 0.3π. We can observe from Fig. 10 that

the SNRs has a large impact on RMSE of ω estimation

performance. Specifically, at a low SNR region, it has a

performance gap between the RMSE of ω and CRB(ω); at

a high SNR region, the RMSE of ω almost approaches to

CRB(ω).

VI. CONCLUSION

In this paper, we investigated the problem of joint estimation

of channel gains and frequency offsets in an NB-IoT system.

We derived the analytical expressions for channel gains and

frequency offset estimation under the maximum likelihood

estimation. We also presented the expectation–maximization

algorithm and apply it to the NB-IoT system for solving joint

estimation of frequency offsets and channel gains. Extensive

simulation results were provided to show that the impact

of systems parameters (such as channel phase difference,

frequency offset difference, SNR, the number of sampling)

on estimation performance.
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