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The paper investigates query-anonymity in Internet of things (IoT) formed by a sensor cloud, where the sensor nodes provide
services of sensing and are subject to user queries of sensing data. Due to the heterogeneity and multi-carrier natures of the sensor
cloud, user privacy could be impaired when the queries have to go through nodes of a third party. Thus, the paper firstly introduces a
novel query k-anonymity scheme that countermeasures such a privacy threat. Based on the proposed k-anonymity scheme, the trade-
offs between the achieved query-anonymity and various performance measures including, communication-cost, return-on-investment
metric, path-length, and location anonymity metrics, are analyzed. By adopting a hybrid approach that takes into account the
average and worst-case analysis, our evaluation results show that most of the obtained bounds on various performance anonymity
trade-offs can be expressed precisely in terms of the offered level-of-anonymity k and network diameter d.
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I. INTRODUCTION

THE Internet of Things (IoT) introduces a paradigm shift
in networking that aims to connect real-world things to

the Internet. These are things that collect information with po-
tential value for information consumers. These IoT candidates
are embedded with computing capabilities, communication
protocols, and sensors to blend into everyday environments
and seamlessly bridge the gap between people, places, and
things over the Internet [1].

Although many real-world things have valuable information
to share, it is a challenge in equipping them with all the
required capabilities to connect to the Internet. The wide
adoption and enhancement of technologies like RFID, cloud
computing, and Wireless Sensor Networks (WSN) have en-
abled the virtualization of the real-world things [1], [2].
For instance, things with embedded sensors provide sensory
data that are accessed as Web services in the cloud and
create the possibility of composing different services to infer
important knowledge about physical environments [2]. The
sensed knowledge is used to enhance the capability of the
things that do not have sensing capability but are in the same
location as those things that have sensing capabilities. This
shift in paradigm has opened a plethora of potential smart
applications via the provision of sensing as a service (SaaS)
[2], [3]. Today, the control and management of thousands of
these things via cloud services is a norm, where real-world
things are virtualized and further enhanced in their capabilities
and semantics [4], [5].

It is clear that IoT matures to provide flexible, scalable,
and real-time communications with the physical world in
a ubiquitous way, which nonetheless leads to security and
privacy concerns at the same moment. The trust factor of
the clients could be significantly damaged in the event that
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the client queries upon a physical sensor are actually received
and handled by a third-party entity (e.g., an untrusted cloud
service provider). As shown in Fig. 1, the owners of the
physical sensors and the sensor cloud are decoupled from the
client via one or multiple virtual sensors. The exposure of
real-world environments to the virtual world requires the IoT
candidates to have the option of being anonymous. In this case,
a query-anonymity scheme is essential to mitigate the privacy
concern, and its security, anonymity, and overhead should be
well defined and quantified.
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Fig. 1: The client queries the sensors in the sensor cloud and
hopes the destination sensor node to be anonymous.

To address the above mentioned problem, the study consid-
ers an application scenario in which the client is concerned
about the privacy of the destination of his query. We take a
communication-based approach where the client is required to
send a query message to additional k−1 destinations in order
to hide its destination of interest. These k destinations form an
anonymity-set [6]–[10] that prevents any untrusted party from
knowing which destination is of interest to the client. Certainly
such a redundancy causes additional communication cost as a
trade-off [11], [12]. As the most important endeavour of the
paper, we adopt an experimental approach to analyze these
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trade-offs in detail to study the average and worst-case bounds
on them, and investigate several variations of anonymity-
sets constructions methods. We are committed to answer the
following questions: what is the impact of these variations on
the performance of secure query k−anonymity scheme with
respect to identity and location-anonymity? Which of these
extensions are worthwhile in terms of the cost-effective secure
query k − anonymity solutions they offer?

The contributions of this paper are in two folds. Firstly,
we propose a novel secure query k-anonymity scheme and
introduce its detailed implementation, including the partition
algorithm, anonymity-sets construction methods, query routing
algorithm, and querying protocol (see section IV). The main
design goal is to lower the incurred communication-cost while
satisfying the desired level-of-anonymity k. Secondly, we
analyze the performance of the proposed scheme in depth by
looking into several performance metrics in various simulation
settings (see section V). During the analysis, we embrace a
hybrid approach that takes both the average and worst-case
scenarios into consideration. All the targeted variables, such
as communication-cost, cost-benefit metric, path length, and
location-anonymity metrics are measured for large values of
independent variables namely, level-of-anonymity k, network
size n, and network diameter d. Our evaluation results estab-
lish bounds on various anonymity performance trade-offs of
the secure k-anonymous query scheme in terms of their offered
level-of-anonymity k, and network diameter d.

II. BACKGROUND AND TERMINOLOGY

The section presents the trust model, network model, and
threat model of the study.

A. Zero Trust Model

We consider a Large WSN conglomerate owned by multiple
operators, and the WSN could be in any type like terrestrial,
underground, underwater, and mobile networks for gathering
environmental data. The clients query the physical sensors for
the sensed data by accessing services provided by the sensor-
cloud providers which could be governments, corporates, or
academia. The various stakeholder entities in the scenario
include the operators who own the WSNs, the cloud service
providers, and the clients that query the sensors. Their relation
is that the cloud service providers lease resources from the
WSN operator/owner to offer the SaaS to their clients [2].
Thus, it is the cloud service providers who face their clients
but are with limited knowledge on the sensor-cloud operations.
Many applications of this model are foreseen in areas like
smart cities, smart transportation, and smart manufacturing.
The clients use the sensor data for different purposes like traf-
fic management, resource exploration, environmental protec-
tion, air pollution control, and civil infrastructure monitoring,
etc.

With the above mentioned scenario, we consider the trust-
none model where a client trusts no other entity [11], which
has been termed recently as ”zero trust model” [13]–[16].
The clients are concerned about the privacy of their interest,
queries, and data access patterns which may be compromised

because of untrusted sensor-cloud owners or other competing
clients.

An interesting application scenario is the deep-sea explo-
ration in oil fields, where an oil company (client) is interested
in querying the deep sea WSN that is owned by operators that
are different from the cloud service provider [12]. Certainly
the oil company (client) is not willing to share its interest
with other stakeholder entities. It follows that a zero Trust
model is such that the client treats the WSN, the cloud service
provider, and other clients as untrustworthy adversaries. The k-
anonymous query scheme provides receiver anonymity service
by hiding the ID of the destination node of a query in the
crowd of other k−1 queries’ destinations. This is achieved by
querying additional k−1 nodes along with the original query,
such that an adversary cannot learn the true destination of a
k-anonymous query with a probability non-negligibly greater
than 1/k by analyzing its traffic patterns. To satisfy this and
to defend against all types of traffic analysis attacks including
the intersection and statistical attacks, the proposed scheme
divides the network of size n into multiple disjoint anonymity-
sets of size k ∈ [1, n].”

B. WSN Network Model

Since query-anonymity solutions in a large-scale WSN are
considered, we group the WSN sensor nodes into clusters
whose head are elected or pre-assigned by network designer
[17]. Thus the WSN is modeled as undirected connected graph
G(V,E), where V (vertices) are a number of n cluster heads
joined by links or edges E. For every two nodes vi, vj ∈ V ,
it holds that the edge (vi, vj) ∈ E if and only if whatever
vi transmits, vj can always receive, i.e., vi is adjacent to vj .
It is important not to confuse WSN sensor nodes with the
nodes in the graph, where the nodes in the graph are cluster-
heads that are richer in resources compared to their cluster
members and serve as gateway for relaying/broadcasting the
clients’ queries. We consider all cluster heads to be equal in
power, computation, and communication capabilities.

C. Threat Model

The adversary in our setting is an unconditional global
passive eavesdropper who is able to monitor and analyze
all the message exchange between the client and the WSN
but does not actively alter them. This is an often adopted
adversarial model called the semi-honest or honest-but-curious
adversary [18]. The adversary is global and strong enough to
have access to the entire WSN. When there is no limitation
on the computational power of the adversary or on her
ability to collude with other component of the system, it is
unconditional. The adversary is able to conduct cipher-text
only traffic analysis attack. The attacker has access only to
the output of the anonymity transformation when executed.

III. PROBLEM FORMULATION

In this section, the problem of designing a secure k-
anonymous query scheme is formulated. Based on the DAS
(Disjoint Anonymity-Sets) construction [19], the following
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three sub-tasks should be defined: one partition algorithm π
and two anonymity transformations T and T−1.

1) π is the partition algorithm that converts the whole WSN
of size n into a union of disjoint non-empty anonymity-
sets. Specifically, the inputs of the algorithm include n
the size of WSN and k ∈ [1, n] the desired level-of-
anonymity. It outputs a partition of WSN containing a
set disjoint anonymity-sets S = {s1, . . . , s⌊n/k⌋}, where
∪s∈S = WSN , and each s ∈ S is of size |s| = [k, 2k−
1]. The upper limit point of anonymity-set size, which
is 2k− 1, captures that fact that n may not be divisible
by k. Hence, there exists at least one anonymity-set of
size in the closed interval [k, 2k − 1].

2) T is the anonymity transformation that maps every query
q in its input space QT ∈ QT to the corresponding
anonymity-set s ∈ S, i.e., ∀q ∈ QT ,∃s = T (q), where
q ∈ s. This means whenever the client wants to send
a query q to a destination node, she is required to
query each node in its corresponding anonymity-set s,
as depicted in Fig. 2 for the case of |s| = 3. Moreover
s = QT , and thus the partition algorithm π defines not
only the set of anonymity-sets S but also the set of input
spaces of anonymity transformation QT.
Since the DAS anonymity-sets are disjoint, the input
spaces of T are disjoint too, which by nature resists all
types of intersection attacks among different anonymity-
sets [20]–[22]. This assures a certain level-of-anonymity
regardless of the computational power of the eavesdrop-
ping adversary who is able to intercept the anonymity
scheme for sufficiently long time.

3) T−1 is the inverse transformation that recovers the true-
destination query from anonymity-set of the responses
to the queries generated by anonymity transformation T .
That is s = T−1(q). Note that T and T−1 can both be
performed by the client which meets the requirement of
trust-none model.

Fig. 2: The client queries additional nodes to hide its true
destination (shaded).

IV. PROPOSED SAS SCHEME

Detailed implementation to each of the sub-tasks under DAS
is provided in this section.

A. The Partition Algorithm

We consider a source-routed square grid topology that has
been widely employed in the related research [12], where the
position of each node is defined by the ordered pair of its
Cartesian coordinates (i, j), where i, j ∈ [1,

√
n]. As in prior

work [12], the client communicates directly with root-node
v1,1, which is the node at the upper left corner. The route
between the root-node and any node in the shortest Manhattan
distance. Note that Manhattan distance dm between two nodes
vi1,j1 and vi2,j2 is equal to the length of the path connecting
them along the horizontal and vertical segments [23].

The following theorem formally defines the proposed par-
tition algorithm and its proof justifies its feasibility.

Theorem 1:
Given a

√
n×

√
n square grid connected undirected graph

G = (V,E), there exists a partition of V into disjoint sets of
nodes S = {s1, s2, . . . , s⌊n/k⌋} each of size ∈ [k, 2k− 1], the
DAS anonymity-sets, such that the following properties hold:

1) The set of nodes {v1, v2, . . . , v|sj |} in such anonymity-
set sj has the following total ordering. Given i ∈
[1, |sj |−1], it holds that the Manhattan distance between
nodes vi and vi+1 is exactly 1.

2) v1 (the first-node from the source along the route) is at
the lowest vertical distance (y-coordinate) from the root-
node v1,1 compared to other nodes in such anonymity-
set sj .

3) Nodes {v2, v3, . . . , v|sj |} in such anonymity-set sj is at
a vertical distance of ⌈|s|/

√
n⌉ from v1.

4) The remainder out of partition n/k is distributed over
anonymity-sets S using either First-Set-Spread (FSS),
Equal-Spread (ES), or Random-Spread (RS) anonymity-
sets construction methods (which will be defined right
below).

The properties (1) - (3) in the theorem ensure that the
communication-cost is minimized when querying multiple
sensor nodes in an anonymity-set, by which v1 (the first-node
along the route) is at the least vertical distance from v1,1,
while all the other nodes of the same anonymity-set is confined
within a vertical distance of ⌈|s|/

√
n⌉ from v1.

The property (4) in the theorem ensures that the remainder
nodes out of the partition n/k is distributed to the anonymity-
sets by using one of the following three anonymity-sets con-
struction methods. The first is called First-Set-Spread (FSS),
which adds all the remaining nodes to the first set closet to the
root-node in order to lower the communication-cost because
the first set is the closet to the root-node. The second is
called Equal-Spread (ES), which goes to the other extreme by
distributing the remainder equally over all the anonymity-sets.
Whereas the Random-Spread (RS) adopts the uniform random
distribution to disseminate the remaining nodes randomly
across anonymity-sets. The three methods will be examined
in Section V.

For the proof of existence of such disjoint anonymity-
sets, our approach is to introduce a partition algorithm
that can be implemented in any 2-connected planner
networks and the resultant a partition meets all the
properties listed in theorem 1. The algorithm calls four
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other procedures, namely ConstructSpanningTree
that constructs a comb-like spanning tree t of G,
ConstructHamiltonianPath that constructs the
Hamiltonian path P of t, FindAnonymitySetsSizes
that determines the size of each anonymity-set, and
ConstructOneAnonymitySet that constructs one
anonymity-set. A working example of the algorithm
that uses First-Set-Spread (FSS) is shown in Fig. 3.

Algorithm 1 Partition Algorithm (π)

Input: G = (V,E):
√
n×
√
n Square grid connected undirected graph , k:

a desired level of anonymity, and ascm: an anonymity-sets construction
method

Output: S: the partition of G into disjoint anonymity-sets
1: n← |V |
2: t← ConstructSpanningTree(G)
3: P ← ConstructHamiltonianPath(t)
4: {|si| |i ∈ [1, ⌊n/k⌋]} ← FindAnonymitySetsSizes(ascm, n, k)
5: foreach i ∈ [1, ⌊n/k⌋] do
6: si ← ConstructOneAnonymitySet(P, |si|)
7: P ← P with all nodes of si removed
8: end for
9: return S← {si|i ∈ [1, ⌊n/k⌋]}

10: procedure ConstructSpanningTree(G′)
/* BFS is the Breadth First Search algorithm */

11: return t′ ← BFS(G′) starting at root-node v1,1
12: procedure ConstructHamiltonianPath(t′)

/* t′ is a comb-like tree constructed by ConstructSpanningTree
procedure above */

13: for i← 1 to
√
n do

14: if i is odd then
15: Remove the edge between nodes (i, 1) and (i+ 1, 1) in t′

16: Insert an edge between nodes (i,
√
n) and (i+ 1,

√
n) in t′

17: end if
18: end for
19: return P ′ ← t′

20: procedure FindAnonymitySetsSizes(ascm′, n′, k′)
21: foreach i ∈ [1, ⌊n′/k′⌋] do
22: |s′i| ← k′

23: end for
24: r ← n′ mod k′

25: if ascm = FSS then
26: |s′1| ← |s′1|+ r
27: else if ascm = ES then
28: foreach j ∈ [1, r] do
29: x← j mod ⌊n′/k′⌋
30: if x = 0 then
31: x← ⌊n′/k′⌋
32: end if
33: |s′x| ← |s′x|+ 1
34: end for
35: else if ascm = RS then
36: foreach j ∈ [1, r] do
37: x← RandomNumberGenerator(1, ⌊n′/k′⌋)
38: |s′x| ← |s′x|+ 1
39: end for
40: end if
41: return {|s′i| |i ∈ [1, ⌊n′/k′⌋]}
42: procedure ConstructOneAnonymitySet(P ′, l)
43: if l > number of nodes in P ′ then
44: return error
45: end if

/* P ′ is a Hamiltonian path that we treat as a tree. */
46: Pre-order traverse P ′ /* traverse from the the root-node, v1,1 */
47: return a set containing the first l nodes we encounter

The Partition algorithm takes as inputs a
√
n×

√
n square

grid connected undirected graph G = (V,E), a desired level
of anonymity k ∈ [1, n], and an anonymity-sets construction
method (ascm). In line 2, we call ConstructSpanningTree
to generate a comb-like spanning tree t of G. Then, we invoke

ConstructHamiltonianPath on t in line 3.
In ConstructSpanningTree, line 10, we invoke Breadth

First Search (BFS) [24], [25] at root-node, v1,1, which visits
all of its adjacent nodes from left to right. Then for each of
these adjacent nodes in turn, BFS visits their adjacent nodes
from left to right if they are unvisited before, and continues
in a similar manner. This forms a comb-like spanning tree as
shown in Fig. 4 that has one spine of length

√
n at y = 1

vertical line, and
√
n teeth, each of length

√
n, along the x

axis.
In ConstructHamiltonianPath, line 12, we convert the

comb-like spanning tree t into a Hamiltonian path P . We
accomplish this by removing some edges and replacing them
with others in different locations. For doing this, In line 13,
we iterate i through the range of rows in the square grid. That
is, it takes on values from 1 through

√
n. In line 14, we limit

i values to odd numbers. In the ith iteration, we remove the
edge between each two consecutive rows (i and i+1) for odd
values of i, and join them by an edge on the last column, as
in lines 15 and 16.

To see why, refer to the comb-like tree t shown in the second
graph from left of Fig. 3. To convert t into a Hamiltonian path,
we need to: remove the edges joining the first and second rows
on the first column, join them by inserting an edge on the last
column,

√
n
th, leave the edge between the second and the third

rows intact, and repeat the remove and insertion between the
third and fourth rows. This is done in two iterations of the for
loop in line 13, as indicated on the resultant Hamiltonian path
in Fig. 3.

Back to the main body of Algorithm 1, we
determine the size of each anonymity-set by calling
FindAnonymitySetsSizes in line 4. This step is a prelude
to assigning nodes to these anonymity-sets which is done
in lines 5 to 8. In FindAnonymitySetsSizes, we set up
an iterator, i, through all the anonymity-sets which takes
values from 1 till ⌊n/k⌋, line 21. In each iteration, we
initialize the ith anonymity-set, |s′i|, to be equal to the desired
level-of-anonymity, k′. This is the minimum size of an
anonymity-set since the anonymity-set size is in [k, 2k − 1].
In line 24, we calculate the remainder r out of the partition
n/k using modulo operation.

Then, starting at line 25, we use if-else if statement to stress
the fact that either one of the three anonymity-sets construction
method (ascm), FSS, EQ, or RS, is used. As mentioned in the
proceeding paragraphs, these methods are used to distribute
the remainder r over anonymity-sets. Simply, the FSS adds
all the remaining nodes r to the first anonymity-set in line 26.
Recall that ES attempts to add equal share of the remaining
nodes r to each anonymity-set. Thus, we first set up an iterator,
j, which takes values from 1 till the remainder r, line 28.
In each iteration, we select an anonymity-set indexed by x
sequentially, lines 29 to 32. Then, we increment its size by
one node from the remaining nodes in line 33. Finally, for the
RS, we again set up an iterator, j, which takes values from
1 till the remainder r, line 36. In each iteration, we increase
the size of an anonymity-set whose index x is selected by a
random number generator following the uniform distribution,
lines 37 and 38.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 1, ISSUE 3, DECEMBER 2021 92

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

root node
(1,1)

(4,4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

root node
(1,1)

(4,4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

root node
(1,1)

(4,4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

root node
(1,1)

(4,4)

Spanning
Tree

Hamiltonian
Path

Anonymity
Sets
k=3

G(V,E) Comb Like (T) Hamiltonian Path (P) Partitions of G
S={si / i =(1-5)}

S5

S4
S3

S2

S1

1 2 3

21 3 4

5432

3 4 5 6

Fig. 3: An example of running the partition algorithm shown in Algorithm 1 on 4× 4 square grid connected undirected graph
.

In line 5 of the main body of the partition algorithm, we
set up an iterator, i, through all the anonymity-sets which
takes values from 1 till ⌊n/k⌋. In each iteration, we call
ConstructOneAnonymitySet, line 6, to construct the ith

anonymity-set. Then, we update the Hamiltonian path by
removing the nodes of constructed ith anonymity-set from it,
as in line 7. Finally, after finishing the for loop in line 9, we
return the partition S of G, which is a collection of anonymity-
sets.

In ConstructOneAnonymitySet, we treat the Hamilto-
nian path p′, which is one of the inputs in addition to an
integer l, as a simple example of a tree. In line 46, we traverse
the tree in a pre-order way [26]. That is, we recursively visit
parent node from left to right before visiting their children
node. In essence, this means we walk down the Hamiltonian
path P ′ from its endpoint that is the root-node. In the last
line, 47, we return the first l nodes we encounter to create one
anonymity-set.

An important assertion is that the path from the root-node
to any other vertex v in t is the shortest path from root-
node to v in G. This can be easily verified via the fact that
each connected graph has a spanning tree [25], as well as
the fact that the shortest path spanning tree t can be built
via Breadth First Search (BFS) [24], [25] which we include
in the procedure ConstructSpanningTree of the algorithm.
Respectively, we derive the Hamiltonian path from the same
spanning tree that we will use later for routing queries to
the anonymity-sets, and collecting their responses, see section
IV-B.

Note that the anonymity-sets are contiguous since all the
nodes are possibly queried. Thus in the algorithm, we generate
these anonymity-sets as a result of splitting a continuous
path originating at the root-node to ensure the continuity
requirement. On the other hand, since the path must be a
Hamiltonian path that visits every node in WSN once, the
disjointedness requirement is naturally met.

Time Complexity: We show that time of running Algo-
rithm 1 on G = (V,E) is linear to the number of nodes
|V | = n. First, the Initialization in line 1 takes O(1) time.
ConstructSpanningTree takes O(|V |+ |E|) with the BFS
algorithm [26]. Now, in a

√
n ×

√
n square grid graph,

we observe that |V | = n, and |E| = 2(n −
√
n). Hence

ConstructSpanningTree takes O(|V |+|E|) = O(n+2(n−
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1
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comb-like tress with BFS
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(b) Comb-like Binary Spanning Tree

Fig. 4: An example of comb-like rooted binary spanning
tree construction algorithm using BFS for 4 × 4 square grid
connected undirected graph. (a) Stepwise construction of the
tree in which the sequence of steps is numbered on the
diagram, (b) the resultant tree

√
n)) = O(n).
In ConstructHamiltonianPath, the for loop costs

O(
√
n) due to a constant time consumed by the execution

of the body of the loop. FindAnonymitySetsSizes in line
4 yields O(n) of running time. This is so because its cost
is mainly of two parts namely, the foreach loop and the
if-else if statement, and each one of them is in O(n) as
follows. The foreach in line 21 costs ⌊n/k⌋ since its body
takes constant time. But k ∈ [1, n], therefore foreach is in
O(n). The FSS case, line 25, of if-else if costs a constant
time, i.e O(1). The ES case costs the same of its foreach
loop in line 28 which performs a constant time block r times.
Recall that r, the remainder out of the devision n/k, is in
O(k) which is in turn in O(n). Hence the EQ case is in O(n).
Finally, the RS case is in O(n) because its foreach performs
a constant time block of code r times. The foreach loop in
lines 5–8 performs ConstructOneAnonymitySet and the
remove of si nodes operation, line 7, ⌊n/k⌋ times. Considering
ConstructOneAnonymitySet, lines 42–45 costs a constant
time, and the Pre-order, line 46, traverse only |si| nodes of
the Hamiltonian path. The remove operation, line 7, removes
|si| nodes from the Hamiltonian path. Since |si| ∈ [k, 2k− 1]
(see section III), each of ConstructOneAnonymitySet and
the remove operation, line 7, takes time Θ(k). Therefore, we
can state the running time of the for loop in lines 5–8 as
O(⌊n/k⌋ × (k + k) = O(n/k × 2k) = O(n). Consequently,
the total running time of the Partition algorithm, which is equal
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to the sum of the time taken by ConstructSpanningTree,
ConstructHamiltonianPath, FindAnonymitySetsSizes,
and the foreach loop in lines 5–8, is O(n+

√
n+ n+ n) =

O(n).
Now we are able to prove the existence of a valid partition

according to theorem 1, which also proves the correctness of
the Partition algorithm.

proof 1 (Proof for Theorem 1): Firstly we argue that
by implementing the Partition Algorithm 1, the generated
anonymity-sets are disjoint since each of them is obtained by
splitting a Hamiltonian path of length n into path segments of
size in [k, 2k − 1]. Then we argue that the four properties in
theorem 1 are satisfied as follows. Property (1) is satisfied due
to the fact that the Manhattan distance between nodes vi and
vi+1 is exactly 1, for i ∈ [1, |sj |−1], since they are successive
nodes on the Hamiltonian path. To prove the feasibility of the
second property, we specify v1 of each anonymity-set to be
the endpoint of the corresponding path segment that is closest
to the root-node along the Hamiltonian path. The property is
satisfied because the root-node, v1,1, is at y = 1, the lowest
y-coordinate. For example, v1 becomes the root-node itself
in the anonymity-set that contains the root-node, wherein the
y-coordinate of v1 is the lowest among other nodes in each
anonymity-set, and nodes {v2, v3, . . . , v|sj |} are located on the
same row of v1 or below it. Since the length of each row is√
n, the number of rows that the anonymity-set spans is in

Θ(⌈|s|/
√
n⌉), which satisfies the third property. The fourth

property is naturally satisfied because in Algorithm 1, the
remainder nodes are distributed over the anonymity-sets using
one of the anonymity-sets construction methods namely, FSS,
ES, or RS.

B. Query Routing

To query a desired (by the client) destination node vd in
WSN anonymously using DAS scheme, we need to route a
query to every member of the anonymity-set sj to which
vd belongs. The proposed routing algorithm achieves this by
building a routing substrate based on the comb-like shortest-
path spanning tree provided by the partitioning algorithm 1. By
launching a single query that visits all nodes of sj to which vd
belongs, the query responses of all the nodes are collected in a
piggyback manner [27], where each node in the anonymity-set
attaches its response data with its ID to the query packet.

The proposed source-route construction, namely Algorithm
2, is given as follows.

The output of Algorithm 2 is the list hj which contains
the source-route header information required by the DAS
anonymity scheme. Each entry in hj consists of two elements:
the node ID value denoted by IDv , and the node action
value denoted by Actionv . As a query request is received,
we first invoke FindAnonymitySet, in line 1, to find the
the index j ∈ [1, ⌊n/k⌋] of the anonymity-set sj to which vd
belongs. In FindAnonymitySet, line 10, an iterator i is set
up through all the anonymity-sets to check which one contains
the queried node, vd. In lines, 2 and 3, we specify x and y
coordinates of the first-node as v1(x1, y1), and the last-node as
v|sj |(x|sj |, y|sj |), of the discovered anonymity-set sj . In line
4, we initialize hj , which contains the source-route header
information, to an empty list. In line 5, we call the procedure

Algorithm 2 Source-Route Construction
Input: G = (V,E):

√
n ×
√
n connected undirected graph, vd ∈ V : the

queried destination node, and S = {si|i ∈ [1, ⌊n/k⌋]}: the anonymity-
sets obtained from running Algorithm 1

Output: hj : the source-route header information which is an ordered list of
node IDs with their action values, and sj : the corresponding anonymity-
set of vd, where j ∈ [1, ⌊n/k⌋]

1: j ← FindAnonymitySet(vd)
/* The coordinates of first-node of the anonymity-set sj */

2: (x1, y1)← coordinates of v1 of sj
/* The coordinates of last-node of the anonymity-set */

3: (x|sj |, y|sj |)← coordinates of v|sj | of sj
4: Initialize hj to an empty list
5: t← ConstructSpanningTree(G)
6: SourceRoutePart1(t, hj , x1, y1)
7: SourceRoutePart2(sj , hj)
8: SourceRoutePart3(t, hj , x|sj |, y|sj |)
9: return hj , sj

10: procedure FindAnonymitySet(v′)
11: for i← 1 to ⌊n/k⌋ do
12: if v′ ∈ si then
13: j′ = i, break
14: end if
15: end for
16: return j′

17: procedure ConstructSpanningTree(G′)
/* BFS is the Breadth First Search algorithm */

18: return t′ ← BFS(G′) starting at root-node v1,1
19: procedure SourceRoutePart1(t′, h′

j , x
′
1, y

′
1)

20: for i← 1 to y′1 − 1 do
21: AppendForwardingNode((1, i), h′

j)
22: end for
23: for i← 1 to (x′

1 − 1) do
24: AppendForwardingNode((i, y′1), h

′
j)

25: end for
26: procedure SourceRoutePart2(s′j , h

′
j)

27: foreach node v ∈ s′j do
28: IDv ← ID of node v
29: Actionv ← 1 /* piggyback action */
30: Append ⟨IDv , Actionv⟩ to h′

j
31: end for
32: procedure SourceRoutePart3(t′, h′

j , x
′
|sj |

, y′|sj |
)

33: for i← x′
|sj |
− 1 to 1 do

34: AppendForwardingNode((i, y′|sj |
), h′

j)

35: end for
36: for i← y′|sj |

+ 1 to 1 do
37: AppendForwardingNode((1, i), h′

j)
38: end for
39: procedure AppendForwardingNode((x, y), h′′

j )
40: IDv ← ID of the node corresponds to point (x, y) in the plane
41: Actionv ← 0 /* forward action */
42: Append ⟨IDv , Actionv⟩ to h′′

j

ConstructSpanningTree on G to generate a comb-like
shortest-path spanning tree t, and then invoke the following
three procedures: SourceRoutePart1, SourceRoutePart2,
SourceRoutePart3 in lines 6, 7, and 8 respectively, on t,
and sj as input arguments.
SourceRoutePart1 constructs the route to v1(x1, y1),

which is the first-node of sj , by traversing the comb-like
shortest-path spanning tree t using two for loops. In the first
loop, line 20–22, we traverse the tree vertically by increasing
the y coordinate along the spine of the comb, i.e. x = 1
vertical line, starting from root-node v1,1, until reaching the
tooth of the comb with a y coordinate equal to (y1 − 1). In
the second for loop, line 23–25, we traverse the tree along
the next tooth, i.e. the one with a y coordinate equal to y1,
horizontally by increasing the x coordinate till we hit v1.
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Each time through any of the two for loops, we append a
forwarding node entry to hj by invoking another procedure,
namely AppendForwardingNode in line 21 and 24, which
specifies the two elements of the appended node entry in hj as
follows: ID of the node, and action value of 0, which denotes
a forward action only. Then we append the forwarding node
entry.

In SourceRoutePart2 (line 26–31), we iterate through the
nodes of the anonymity-set sj . In each iteration of the foreah
loop, we specify the two element of the appended node entry
as follows: the ID of the node, and the action value of 1,
which denotes a respond action in a piggyback manner. Then
we append the node to hj .

In SourceRoutePart3, we construct the route from the last
node of sj namely, v|sj |(x|sj |, y|sj |) to the root-node v1,1. To
achieve this, we traverse t using two for loops. In the first
loop, line 33–35, we traverse t horizontally by decreasing the
x coordinate, starting from x = x|sj | − 1 till we reach the
spine at x = 1. Then, in the second for loop on line 36–38,
we traverse t vertically by decreasing the y coordinates along
the spine, starting from y|sj | +1 till we reach v1,1. Similar to
SourceRoutePart1, in each iteration of any of the for loops,
we invoke AppendForwardingNode to append a forwarding
nodes entry to hj after specifying its two element: ID of the
node, and action value of 0, which denotes a forward action
only.

Time Complexity: The Source-Route Construction algo-
rithm, listed in Algorithm 2, runs in time linear with the size of
the square grid WSN, |V | = n. To see that, firstly we observe
that FindAnonymitySet takes at most O(⌊n/k⌋) = O(n).
The assignments and initialization, lines 2, 3, and 4, takes
constant time, Θ(1). As we establish in section IV-A, the
running time of ConstructSpanningTree on a square grid
graph is in O(|V |+ E||) = O(n). Each of the two for loops
of SourceRoutePart1 takes O(

√
n). This is so because the

first loop iterates along the spine of the comb-like spanning
tree, and the second iterates along one of its teeth, and both
are in O(

√
n) as mentioned in section IV-A.

The same argument is valid for the running time of
SourceRoutePart3 with the parts of the comb-like
tree along which the two for loops iterate are reversed.
Therefore, SourceRoutePart3 takes O(

√
n). Lastly,

SourceRoutePart2 runs in time linear with the size of
the anonymity-set of the queried node vd, i.e. it is in
Θ(|sj |). Since |sj | ∈ [k, 2k − 1], and k ∈ [1, n], thus
SourceRoutePart3 takes time O(n) in the worst case.
Therefore, the total running time of the Source-Route
Construction algorithm, listed in Algorithm 2, which is
equal the sum of time taken by FindAnonymitySet,
ConstructSpanningTree, SourceRoutePart1,
SourceRoutePart2,and SourceRoutePart3 is
O(n+ n+

√
n+ n+

√
n) = O(n).

C. The Querying Protocol

Our querying protocol, which implements the DAS
anonymity scheme (π, T, T−1), defines the rules for sending
the client’s query to a desired destination node vd, and

collecting its response anonymously. The protocol involves
the following parties: the client C, the sensor-cloud S, and
the WSN nodes V . C is the initiator of the protocol since she
is the party who decides when to send a new query, the event
that starts the execution of the protocol. Based on their action
values in the header of the query packet, WSN nodes either
forward the query packet to the next hop in the source-route
header information, or piggyback their response data before
forwarding.

In Protocol 1, we describe, in detail, how the parties
engage in the querying protocol by exchanging messages, and
acting upon receiving them. In the following, we identify
some relevant aspects of the protocol that comply with the
requirements of our trust model as specified in section II.

Recall from section II, in our trust-none model, the owner of
the sensitive information namely, the client C, trusts no other
player in the anonymity scheme. In other words, the model
allows the adversary to be outsider or any one of the querying
protocol players except the owner of the sensitive information
C. Moreover, the scheme remains secure against the collusion
of any of its outsider or insider adversaries. Consequently,
in addition to the partition algorithm π, all of the anonymity
transformations (T , and T−1) are performed exclusively at
the client C. This is illustrated at the beginning of Protocol 1
where Algorithm 2, which utilizes the Partition algorithm π, is
used to find the anonymity-set sj corresponds to the queried
node vd, and construct the source-rote header information hj .
In essence, this means that the anonymity transformation T
and the partition algorithm π are run entirely at C before even
contacting the sensor-cloud S. Further, at the end of Protocol
1, the inverse anonymity transformation T−1 is performed at
C.

V. PERFORMANCE EVALUATION

The proposed DAS k-anonymous query scheme was exam-
ined via extensive simulation. We ensure all the targeted vari-
ables, such as average-case, and worst-case communication-
cost, path length, and location-anonymity, are systematically
measured with respect to the level-of-anonymity k, WSN
network size n, and diameter d. We implemented all of our
algorithms and querying protocol in a large-scale network
environment on a dedicated 2.6 GHz Intel Core i7 x86 64
bit machine running OS X 10.11.6 El Capitan. In essence, we
measured the following:

• How the anonymity scheme performance changes with
the level-of-anonymity k for various values of WSN
network diameter d, and

• How the anonymity scheme performance changes with
WSN network diameter d for various values of level-of-
anonymity k.

The query packet is structured as follows: 1 byte for the
client ID, 10 bytes for MAC header, 1 byte for the action
taken by each node to be either froward or append response
then forward, 2 bytes for the node IDs. Each query data
and response data is modeled to be constant at 32 bytes. To
evaluate energy consumption, we adopt the MEMSIC TelosB
mote platform [12] where each node is composed of a TI MPS
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Protocol 1 The Querying Protocol
upon receiving a request from the client C to query a destination node vd:
Using Algorithm 2:

Find anonymity-set sj of vd
Generate corresponding source-route header information hj

Initialize R to an empty list of size |sj |
/* R stores piggybacked response data */
Create a query packet ρ:

Insert the client query data, and R into the payload of ρ
Insert hj into the header of ρ

Send ρ to the Sensor-Cloud S
upon receiving ρ by S from C:
Forwards ρ to WSN through v1,1 (the root-node of WSN)

upon receiving ρ by an arbitrary WSN node v:
if v is not the first node entry in hj then

Drop ρ
else

Remove v’s entry ⟨IDv , Actionv⟩ from hj

if Actionv = 0 then
ρ← ρ with v’s entry removed from hj

Forward(ρ)
else if Actionv = 1 then

Append v’s response data di, i ∈ [1, n] to R in ρ
ρ← ρ with v’s entry removed from hj

Forward(ρ)
end if

end if
upon receiving ρ by S from v1,1:
Send back to C

upon receiving ρ by C from S:
Extract vd’s response data from R
Drop the rest of ρ

procedure Forward(ρ′)
if hj is empty then

Send back to S
else

Forward ρ′ to the next node in hj

end if

430 microcontroller and CC2420 RF transceiver that consumes
1.8 microjoule per byte for reception and 2.1 microjoule per
byte for transmission.

1) Performance Metrics
In addition to various performance anonymity trade-offs,

we are interested in measuring the offered level-of-anonymity
k (the benefit) relative to the communication-cost c (cost) of
implementing the proposed scheme, as well as evaluating the
achieved location-anonymity. For the benefit-cost analysis, the
metric of Return-On-Investment (ROI) is introduced, where
ROI = k

c . In essence, ROI measures the return on investment
relative to the cost of investment. ROI is taken for both the
average and worst-case communication-cost evaluation.

For the location-anonymity, two formal metrics are adopted
to measure the average and maximum achieved anonymity.
The first metric is the radius of cloaking area of a specific
level-of-anonymity k that is modelled as an equivalent circular
area. Note that the cloaking area is the amount of space within
which the true destination of a query is not identifiable due
the the existence of its anonymity-set members, whereas the
cloaking distance of a node, denoted as dc, is the distance
between it and any another node in its anonymity-set [28].
The radius r measures the average cloaking distance of the
centroid node over all anonymity-sets. Note that the centroid
node of the anonymity-set sj is the node vi with the minimum
sum of cloaking distances Sumidc to all other nodes in sj ,
i.e., minvi∈sj (Sumidc). Thus, we compute the radius r as the

minimum value of the average of the cloaking distances of the
centroid over all anonymity-sets for a specific k, i.e.,

r = min
sj∈S

(
minvi∈sj (Sumidc)

k − 1
), i ∈ [1, |sj |], j ∈ [1, ⌊n/k⌋]

To see how r is computed, a simplified example in which
k = n = 9, i.e. for a single anonymity-set case, is shown
pictorially in Fig. 5.

Now, we show how to obtain the second metric, i.e. the
maximum cloaking distance dmax. We first find the maximum
cloaking distance dmaxi

for each node vi in an anonymity-
set sj for a certain level-of-anonymity k. Since each node
in the anonymity-set is a possible true destination, then we
apply the concept of weakest link to select the minimum of
the found maximum cloaking distances for each anonymity-set
[29]. Eventually, we choose the weakest link again by taking
the minimum over all of the anonymity-sets which results in
the final maximum cloaking distance dmax. That is, dmax =
minsj∈S(minvi∈sj (dmaxi)), i ∈ [1, |sj |], j ∈ [1, ⌊n/k⌋]

1 2 3
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Cloacking
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Fig. 5: A simplified example of creating the equivalent circular
cloaking area.

Based on the performance metrics, two sets of experiments
are conducted with regard to the level-of-anonymity k and the
network diameter d.

A. Level-of-Anonymity k

We first measured the average communication-cost ca in-
curred by DAS to achieve various level-of anonymity k ∈
[1, n] based on a partition construction FSS, ES, and RS,
respectively. Since the network diameter d of a square grid
graph is equal to 2(

√
n− 1), changing n implies change of d.

For more reliable results, our experiment is repeated in several
WSN networks of sizes up to n = 10000, that is of diameter
up to 198. In addition, we averaged the RS results over 100
random runs. We depict the obtained results for larger network
sizes in Fig. 6.

It is observed that there exists a value of k = d, which
we call the inflection point k0, after which the average
communication-cost is bounded from above and below by
O(k2), and Ω(k2) respectively, i.e. it is in Θ(k2). Accordingly,
these bounds are labeled as UB (Upper Bound) and LB (Lower
Bound) in Fig. 6.

To explain the above results, we argue as follows. The
communication-cost c consists of two components namely, the
routing-cost and the collection-cost, which is in Θ(d2+k2) and
Θ(k2), respectively. Please see appendix for a formal proof
(Lemma 1). Thus, the total incurred communication-cost c,
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Fig. 6: The average communication-cost with varying k.

which is the sum of the routing-cost and collection-cost, is
c = Θ(d2 + k2) + Θ(k2), which is simplified as follows.

c = Θ(d2 + k2) (1)

When k is relatively large compared to d, the cost becomes
c = Θ(k2), which happens when k exceeds the inflection point
k0 = d, as in the proceeding paragraphs.

In terms of comparing the different anonymity-sets con-
struction methods, we observed that they are close to each
other with respect to their incurred average communication-
cost to achieve various values of k. It is expected that the FSS
takes less energy because it tends to have the whole remainder
in the first set close to the root node eliminating the first and
third part of the source-route, as described in Algorithm 2.
However, it was quiet surprising that FSS was outperformed
consistently by the ES and RS at some points. These points
occur when the remainder of n/k is at its local maximum
value. A reason for that must be related to the way that the
piggy-back strategy collects sensor readings which incurs a
cost that grows with the remainder of n/k. Additionally, the
differences in energy consumption become less evident as the
remainder approaches zero. This is what gives the curves their
stair-like shapes.

Fig. 7 shows the results on worst-case communication-cost
cw. Similar observations are gained as that of the average-
case above, where the worst-case cost of FSS was the highest,
the Random-Spread performs in between the FSS and the ES,
but closer to the later due to its random assignment of the
remaining nodes to different sets.
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Fig. 7: The worst-case communication-cost with varying k .

There is something specific and enriching that we discover
by looking into the curves and data traces of ROI for variable
level-of-anonymity k as shown in Fig. 8, and 9. The ROI
curves were shaped like a bell around the inflection point

k0 = d for both the average and worst-case cost, and all
the anonymity-sets construction methods. That is, the ROI
increased with k till the inflection point k0 = d after which
it decreased significantly with k. From practical viewpoint,
this indicates that the ROI relative to the cost is at its highest
values around the inflection point k0 = d.

We argue as follows. First recall from equation 1 that
the communication-cost c consists of two components, one
grows in proportion to k2 and the other is in d2. The first
component increases with the anonymity-set size |s| since
|s| ∈ [k, 2k − 1]. On the other hand, the second is due to
the cost of forwarding a query to the first-node of anonymity-
set, and returning collected responses from the last-node of the
anonymity-set. Since we fixed the network size n during this
part of the experiment, the length of the forward and return
paths shrinks with every increment in k. It follows that this
component decreases with k. Now, for the range of k < k0,
The increment in the first component is marginal and balanced
by the decrease in the second leaving the communication-
cost almost constant. Thus, ROI = k/c increases with k for
k < k0. Nevertheless, when k exceeds the inflection point
k0 = d, the first component k2 dominates the second which
results in a substantial decrease in ROI as the value of k
grows.

By comparing the ROI data traces of different anonymity-
sets construction method, we made comparable observations
to that of the average and worst-case analysis mentioned in the
proceeding paragraphs. That is, the values of the ROI under
the three methods were close to each other. However, the ROI
of FSS was the lowest in most of the time as k increased due
to the growing size of the first anonymity-set. This becomes
more evident when the worst-case cost is used to compute the
ROI as shown in Fig. 9. Additionally, the ROI of RS was
between the FSS and the ES.
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Fig. 8: The benefit-cost metric using the average
communication-cost ROIav with varying k .

Furthermore, we found that the total number of hops along
the query and response path are in O(k) for k > d for both the
average and worst-case, as shown in Fig. 10 and 11, regarding
various n and anonymity-sets construction methods.

The path length is further used as an index to compare
the performance of the different anonymity-sets construction
methods. We observed that all of them performed similarly
in the average-case, which follows our intuition since the
different anonymity-sets construction methods spread the same
total number of hops in various ways. Thus, they produced
comparable total number of traversed hops to query all the
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Fig. 9: The benefit-cost metric using the worst-case
communication-cost ROIw with varying k

anonymity-sets and collect their responses. Nevertheless, the
worst-case path length generated by the FSS is found longer
than that by ES and RS whenever there is a remainder out
of n/k. To see why, recall that the hops along the query and
response path are of two types: routing-hops which increase
with d, and collection-hops which increase with k. Now since
the ES attempts to distribute the remaining nodes out of n/k
equally on all of the anonymity-sets, the worst-case collection
hops grows steadily with k. On the contrary, the FSS adds
all the remaining nodes to the first set. Thus, the worst-
case number of hops occurs at the first set because it has
the maximum number of collection hops. Since d was fixed
during this set of experiments, the collection hops dominated
the routing hops when k grows larger than d. This resulted in
that the worst-case path length of FSS surpassed that of the ES
whenever there is a remainder. On the other hand, RS acted
closely to the ES because it disseminates the remaining nodes
out of n/k randomly on the anonymity-sets which makes it
divergent from the FSS case.
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Fig. 10: The average number of hops with varying k .
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Fig. 11: The worst-case number of hops with varying k .

We now evaluate the achieved location-anonymity by DAS
anonymity scheme using the maximum cloaking distance

dmax, and the radius of cloaking area r metrics that are
discussed in section V-1. As expected, we observed that both
the dmax and r grew with k because of the increase in the size
of the anonymity-set. When k is relatively large compared to
d, the upper bound of dmax and r is in O(d). Specifically,
both dmax and r values are less than d. We depict our results
for various network size n in Fig. 12, and 13.

By analyzing the location-anonymity metrics data which is
shown in Fig.s 12, and 13, we also noted that the ES achieved
better location-anonymity compared to FSS whenever there
is a remainder out of n/k. Nonetheless, RS stayed between
them in most cases. To reason about it, recall that ES attempts
to distribute the remainder equally on all the anonymity-sets
while FSS adds all the remaining nodes out of n/k to the
first anonymity-set. Thus, the anonymity-sets created by FSS
are all of the smallest size which is k except for the first set.
On the other hand, when the remainder of n/k is greater or
equal to n/k, ES yields anonymity-sets all of a size greater
than k. Now, both of dmax and r adopts the security weakest
link concept as discussed in section V-1 which always selects
the anonymity-set with the minimum size to calculate these
metrics. Hence, ES is in advantage by having the minimum
size of the anonymity-sets greater than that of the FSS when
there is a large enough remainder of n/k. In this way, the
metrics of ES become higher than that of FSS as an indicative
of better offered location-anonymity. Lastly, because of the
randomness of RS, it acts between the two extremes.

As stated in section V-1, whereas dmax measures the
location-anonymity that is offered by the anonymity scheme,
r acts as a benefit-cost measure. In r, the benefit is sum
of cloaking distances, and the cost is the level-of-anonymity
which is proportional to the size of anonymity-set that provides
the location-anonymity. In essence, r is the radius of the
equivalent cloaking area, and it gives a figure about how much
location-anonymity is provided if a new node is added to
the anonymity-set. By looking into the data traces of r, we
discovered ES can provide a larger cloaking area than that by
FSS but with less cost.
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Fig. 12: The maximum cloaking distance metric dmax with
varying level-of-anonymity k .

B. Network Diameter d

The results of average and worst-case communication-cost
obtained by varying d for each value of k are analyzed in
this section. As shown in Fig. 14 and 15, when d exceeds
some point d0 = k, the communication-cost in the average
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Fig. 13: The radius of equivalent cloaking area metric r with
varying level-of-anonymity k .

and worst-case becomes bounded from above and below by
O(d2) and Ω(d2) respectively. This is fully coherent with the
result of equation 1 which states that, c = Θ(d2 + k2). The
upper and lower bounds are labeled on each graph as UB and
LB respectively.

For the average case, it is observed that ES consumed more
energy in the average-case as d becomes larger compared to k,
as shown in Fig. 14. Since FSS puts all the remainder of n/k
in the first anonymity-set, it is an energy saver with respect
to d2 component of the cost, and a consumer in terms of
k2 component of the cost. The opposite holds for ES. When
d surpasses k, the term d2 becomes more dominant than k2

component, and vice versa. Consequently, It is more practical
to adopt FSS when d exceeds k, as in figures 14, and 15.
However, when k is relatively large compared to d, ES should
be preferred, as in 6, and Fig. 7.

For the worst-case results, as shown in Fig. 15, FSS was
outperformed by ES specially at large values of k due to
the fact that the worst-case cost of FSS occurs in the first
anonymity-set which vastly grows with k when there is
remainder.
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Fig. 14: The average communication-cost with varying d .
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Fig. 15: The worst-case communication-cost with varying d .
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Fig. 16: The benefit-cost metric using the average
communication-cost ROIav with varying d .

We have also found that ROI decreased with d for both
the average and worst-case cost, as shown in Fig. 16, and 17,
mostly due to the fact of ROI = k/c, where c encompasses
both the k2 and d2 components. Since k is constant in this
set of experiments, the sizes of anonymity-sets and the k2

component of the cost varied slightly due to the mild change
in the remainder of n/k. Therefore, approximately the ROI
changed inversely with d2 when d oversteps k. This became
more obvious when d grows beyond the inflection point d0 =
k as d2 dominates k2.

In analogy with the average and worst-case cost results,
the comparison among ROI of different anonymity-sets con-
struction methods of the anonymity scheme reveals similar
implications. For the average-case results shown in Fig. 16,
ES yields the lowest ROI because of its sensitivity to the
increment in the d2 component of the cost. For the worst-case
ROI shown in Fig. 17, FSS achieves the lowest since the
whole remainder was left in the first anonymity-set resulting
in the highest worst-case cost, and hence the lowest ROI .
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Fig. 17: The benefit-cost metric using the worst-case
communication-cost ROIw with varying d .

Fig. 18 and 19 show the path length results in the average-
and worst-case scenarios for various values of k under the
three anonymity-sets construction methods. It is found that in
the average-case, the generated paths by ES are mostly longer
than that by the others, due to the fact that ES distributes
the reminder nodes evenly to all the anonymity-sets, thereby
subject to the longest path.

In the worst-case, on the other hand, the three anonymity-
sets construction methods mostly produced identical path
lengths as d increased, mostly due to the fixed and rela-
tively small values of k that well mitigates the influence
of collection-hops and lets the effect of routing-hops that
grows with d rather trivial. Hence, the worst-case path length
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occurred at an anonymity-set that is far away from the first set
where the routing-hops are more. However, the size of such
anonymity-set, and eventually the number of collection-hops,
is almost the same for different anonymity-sets construction
methods. This is because the remainder out of n/k is small,
so the anonymity-sets construction methods either change the
size of the anonymity-sets other than the first set mildly or
leave it untouched. Consequently, the different anonymity-sets
construction methods behaved comparably.
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Fig. 18: The average number of hops with varying d .
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Fig. 19: The worst-case number of hops with varying d .

Fig. 20, and 21 show the performance of location-anonymity
of the proposed scheme. We observed that both of the location-
anonymity metrics are smaller than k when d is relatively large
compared to k. The reason is that the location-anonymity is
limited by the anonymity-set size which is in turn asymptoti-
cally upper-bounded by the level-of-anonymity k.

By comparing location-anonymity metrics under different
anonymity-sets construction methods, we found that as d is
large they all performed similarly. This is due to the fact that
as d and n are increased, the number of anonymity-sets ⌊n/k⌋
exceeds the remainder out of n/k since we kept k fixed during
this set of experiment. This possibly causes ES unable to
distribute the remainder equally on all the anonymity-sets, and
possibly some of the anonymity-sets would be left untouched
at size of |s| = k which is also the smallest size of anonymity-
sets for FSS. Recall that we select the anonymity-set with the
minimum size to compute dmax and r. Thus, FSS and ES
behaves similarly. However, they may differ a little due to
the variations in the geometric structure of the anonymity-
sets that affects the cloaking distances measurements within
an anonymity-set.

VI. RELATED WORK

Prior work in the area of analysis of trade-offs between
query-anonymity and various performance metrics is limited
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Fig. 20: The maximum cloaking distance metric dmax with
varying network diameter d .
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Fig. 21: The radius of equivalent cloaking area metric r with
varying network diameter d .

and not rigorous. Carbunar et al. [12], even in their simulation
results, did not analyze the trade-off between query-anonymity
and performance metrics along the whole range of level-of-
anonymity. On the other hand, the work of De Cristofaro et
al. [27] provides a querying protocol without characterizing
the trade-off between its achievable query-anonymity and its
incurred communication-cost. They measure the cost practi-
cally and independently from the obtained level-of-anonymity.
Hayawi et al. [30] only focused on trade-off between query-
anonymity and communication cost as a performance index for
the query-anonymity scheme. As a step towards addressing
this lack in the literature, we analyzed in-depth the trade-
offs between the offered query-anonymity and various per-
formance measures such as, communication-cost, path-length,
return-on-investment metric, and achieved location-anonymity.
Such comprehensive evaluation helps to unravel key factors
affecting the performance of the anonymity scheme.

Chaum introduced the notion of anonymity-set in the DC-
net [6] in 1988. The well-cited definition of anonymity-set is
given by Pfitzmann and Hansen [7] , “Anonymity is the state of
being not identifiable within a set of subjects, the anonymity-
set.” Considering anonymous communication systems which
deal with sending and receiving of messages, anonymity is
usually used to hide the identities of the actual sender, receiver
or both within anonymity-set of other possible senders and/or
receivers [7].

As stated in section III, the attacker intersects the out-
put sequences of multiple runs of the querying protocol in
order to identify the true destination of the client query
[21], [31], [32]. In DAS, we adopt a unique approach that
avoids intersection attack by using disjoint anonymity-sets
with distinct members. This proactive approach has been stated
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briefly by De Cristofaro et al. [27] as follows,“we can let
the client select the same route for the same queried node.
Thus, ADV can not intersect its views of query executions”,
(ADV is the adversary). Nevertheless, they did not mention
how to accomplish that. In this work, we maintain the disjoint
property of the anonymity-sets by having the WSN nodes that
connect the client to an anonymity-set forward the query but
do not respond to it. To the best of our knowledge this is the
first preventive measure to defend against intersection attack.

Although not in the context of trade-off analysis, schemes
similar to DAS are studied in prior work [30], [33]. Therefore
we do not claim novelty for the concept behind DAS. However,
we presented DAS as a secure k-anonymous scheme, and stud-
ied its security properties by adopting information theoretic
approach [34]–[37]. In addition, we break DAS down into
its essential elements namely, the partition algorithm π, the
anonymity transformation T , and the inverse transformation
T−1. This proves to be useful in our modular design of
DAS for the sensor-cloud-based IoT environment, especially
in the implementation of its partition algorithm, query routing
algorithm, and querying protocol.

VII. CONCLUSIONS

The paper studied the average- and worst-case query-
anonymity performance trade-offs in the context of sensor-
cloud-based IoT systems. We firstly presented the specification
paradigm for the design and implementation of a secure
k-anonymous query scheme for privacy preservation in the
presence of unconditional eavesdropping adversary. Based on
the proposed query and routing protocols, extensive analysis
was conducted in order to establish bounds on trade-offs
between offered query-anonymity and various performance
measures such as communication-cost, return-on-investment
ROI , path length, and offered location-anonymity. Our exper-
imental results show that most of these bounds are functions
of the level-of-anonymity k and network diameter d, and
the return-on-investment ROI is at its highest values at the
point k = d. In addition, the performance of the different
anonymity-sets construction methods was observed and ana-
lyzed, which shows that in the average-case scenario, First-
Set-Spread outperforms when k is relatively small compared
to d, while Equal-Spread is favored when k is relatively large
compared to d. In the worst-case scenario, First-Set-Spread
fails behind Equal-Spread and this is more visible at large
values of k.

We endeavor to make our evaluation results more compre-
hensive by testing our ideas in various simulation settings of
heterogeneous anonymity-sets, mobile nodes, different rout-
ing algorithms, data collection strategies, network topologies
and other system parameters. Another streak of research is
to study all of the involved trade-off relationships such as
communications-cost, cost-benefit metric, path length, return-
on-investment, and location-anonymity metrics for the k-
anonymous query scheme simultaneously.

APPENDIX A
Lemma 1: Assume the query and response data are of con-

stant size, to achieve a level-of-anonymity k in a source-routed

square grid whose diameter is d, the incurred communication-
cost is c = Θ(d2 + k2).

proof 2: communication-cost c consists of two components
namely, the routing-cost and the collection-cost. The routing-
cost is the cost of forwarding a query to the anonymity-
set, and return collected responses from it. The collection-
cost is the cost of collecting responses from all nodes in the
anonymity-set. Assuming the query and response data is of
constant size so that its transmission over one hope incurs a
constant communication-cost, the collection-cost is in Θ(k2),
and the routing-cost is in Θ(d2 + k2). For data collection,
we are using piggyback strategy in which each node of the
anonymity-set sj appends its response to the query packet.
Since the response data are of constant size by assumption,
the collection-cost is incremented by Θ(1) over every next
hop in the anonymity-set. Thus, the collection-cost is in
Θ(1) + · · ·+Θ(|sj | − 1) +Θ(|sj |) = Θ(|sj |2) = Θ(k2). The
last equality comes from |si| ∈ [k, 2k − 1], i.e. |sj | ∈ Θ(k).

The routing-cost comprises two components namely, the
return-cost of collected responses, and the source-route cost.
To find the first, recall that the collected responses are of size
|sj |, and they travel a distance of Θ(d) back to the root-node
along the third part of the rout (see Algorithm 2). This is
so because the third part of the route is a shortest distance
between a pair of nodes, and d is the longest shortest distance
between any pair by definition. This incurs a return-cost of
Θ(d|sj |) = Θ(dk). For the source-route cost, recall that each
node along the routing path removes its entry from the source-
route header information hj , as mentioned in our querying
protocol listed in Protocol 1. Assuming the initial length of
the |hj | = l, we abstract this cost asymptotically to be equal
to Θ(l)+Θ(l−1)+ · · ·+Θ(1) = Θ(l) = · · ·+Θ(l) = Θ(l2).
To find l in terms of k, and d, recall that hj consists of three
parts from our routing algorithm listed in Algorithm 2. Each of
the first and third is in Θ(d), since each of them is a shortest
path between a pair of nodes, and d is the longest shortest
path between any pair by definition. The second path, which
passes through the nodes of the corresponding anonymity-set
sj , is in Θ(k) because it is in Θ(|sj |), and |sj | = Θ(k). Thus,
|hj | = l = Θ(2d + k). Hence, the source-route cost is in
Θ(l2) = Θ((2d + k)2) = Θ(4d2 + 4dk + k2) = Θ(d2 + k2).
Therefore, the routing-cost, the sum of responses return-cost
and source-route cost, is in Θ(kd+ d2 + k2) = Θ(d2 + k2).

Now, the total incurred communication-cost c, which is the
sum of the routing-cost and collection-cost, is c = Θ(d2 +
k2) + Θ(k2), which is simplified as, c = Θ(d2 + k2).
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