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Virtual reality (VR) video streaming and 360° panoramic video have received extensive attention in recent years, which can
bring users an immersive experience. However, the ultra-high bandwidth and ultra-low latency requirements of virtual reality video
or 360° panoramic video also put tremendous pressure on the carrying capacity of the current network. In fact, since the user’s
field of view (a.k.a viewport) is limited when watching a panoramic video and users can only watch about 20% ~30% of the video
content, it is not necessary to directly transmit all high-resolution content to the user. Therefore, predicting the user’s future viewing
viewport can be crucial for selective streaming and further bitrate decisions. Combined with the tile-based adaptive bitrate (ABR)
algorithm for panoramic video, video content within the user’s viewport can be transmitted at a higher resolution, while areas
outside the viewport can be transmitted at a lower resolution. This paper mainly proposes a viewport-driven adaptive 360° live
streaming optimization framework, which combines viewport prediction and ABR algorithm to optimize the transmission of live
360° panoramic video. However, existing viewport prediction always suffers from low prediction accuracy and does not support
real-time performance. With the advantage of convolutional network (CNN) in image processing and long short-term memory
(LSTM) in temporal series processing, we propose an online-updated viewport prediction model called LiveCL which mainly utilizes
CNN to extract the spatial characteristics of video frames and LSTM to learn the temporal characteristics of the user’s viewport
trajectories. With the help of the viewport prediction and ABR algorithm, unnecessary bandwidth consumption can be effectively
reduced. The main contributions of this work include: (1) a framework for 360° video transmission is proposed; (2) an online
real-time viewport prediction model called LiveCL is proposed to optimize 360° video transmission combined with a novel ABR
algorithm, which outperforms the existing model. Based on the public 360° video dataset, the tile accuracy, recall, precision, and
frame accuracy of LiveCL are better than those of the latest model. Combined with related adaptive bitrate algorithms, the proposed
viewport prediction model can reduce the transmission bandwidth by about 50%.

Index Terms—360° video streaming, video streaming framework, viewport prediction, adaptive bitrate streaming, virtual reality.

I. INTRODUCTION AND MOTIVATION Firstly, panoramic video is different from traditional video
in many aspects such as collection, projection, and com-
pression. The collection process requires multiple cameras to
capture cooperatively. In order to transmit panoramic video,
it is necessary to project the 3D panoramic video onto a
two-dimensional plane. Equirectangular projection (ERP) [3]
is one of the most commonly used projection methods and
is also computational-friendly because each rectangle in the
equirectangular projection has the same solid angle. After
projection, the video needs to be encoded and compressed
during the transmission process. Generally, the AVC/H.264
[4] encoding method is used. Designing appropriate collection,
projection, and compression methods can reduce spatial and
temporal redundancy while ensuring video quality, reduce
transmission bandwidth consumption, and increase system
capacity.

Secondly, the bandwidth for transmitting a 4k 360°
panoramic video to the client and allowing users to watch in all
directions is 400Mbps, while the traditional 4K video stream-
ing requires only 25Mbps of bandwidth [5]. Panoramic videos
require a very high video resolution to provide users with a

HE concept of VR was born as early as the 1950s, but

due to the limited resources and lack of technology at
that time, the development of virtual reality (VR) was limited.
According to International Data Corporation’s (IDC) research
results [1] on the domestic XR (Augmented Reality, Virtual
Reality, Mixed Reality) [2] market, the business end industry
applications represented by entertainment scenes, life scenes,
and even educational scenes are more and more popular. VR
headsets can enhance entertainment experience, facilitate life,
and enrich teaching methods to make up for the lack of scenes.
The rise of 5G communication technology has greatly pro-
moted the development of streaming media services, especially
360° panoramic video and VR video. VR videos can capture
the scene in all directions, allowing the viewer to dynamically
change the viewing position during playback, and obtain an
immersive watching experience. Therefore, more and more
video content providers, including YouTube and Facebook,
provide 360° video-on-demand content and actively develop
360° video-related technologies. However, due to the huge
challenges in the collection, transmission, and playback of

panoramic video, applications related to panoramic videos
cannot be popularized in the entertainment life of the public,
and the details are as follows.
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high-quality watching experience, which is normally greater
than 4K. However, the current global average fixed bandwidth
and mobile bandwidth download speeds are 113.25Mps and
63.15Mbps [6]. Therefore, in a dynamic time-varying network
environment, transmitting 360° videos to the client is very
challenging and it’s more difficult to meet bandwidth require-
ments.
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This work mainly focuses on the scene of transmitting live
panoramic video stream, aiming to reduce the transmission
bandwidth. It is conceivable that when users are watching 360°
panoramic videos, they can obtain the viewing angle by mov-
ing their heads while wearing head-mounted devices, tilting
or rotating the phone, or dragging the mouse. In this scenario,
only a part of the whole video, approximately 90° to 180°
in the viewport, can be enjoyed. Therefore, the video content
outside the user’s viewport is wasted during this period. In
a VR live broadcast scenario, if the panoramic video stream
is completely transmitted to the user without considering the
user’s viewport, the user will cache a large amount of useless
information and cause waste of network resources. Motivated
by this, we propose an online-updated viewport prediction
method, which can predict users’ region of interest (ROI). In
addition, we introduce a novel ABR algorithm [7] to adjust the
download bitrate according to the real-time network and client
status. These two key technologies support our panoramic
video streaming framework, in which we deliver the video
content inside the users’ ROI to the client in high quality and
the remaining video content in low quality. Compared with
all high-quality transmission of panoramic video, this scheme
can reduce the transmission bandwidth and the load capacity
of the server to a certain extent.

Our main contributions can be concluded into the three
following aspects:

e A new live panorama video transmission framework is
proposed, which is the whole detail process from video
acquisition, video preprocessing, video transmission to
video display. Based on the framework, we design a
panoramic video playback platform.

e A novel algorithm is proposed, where an innovative
viewport prediction model called LiveCL is combined
with an adaptive bitrate algorithm to optimize the trans-
mission. The live viewport prediction model outperforms
the existing model because of the dynamic adjustment
criterion threshold mechanism.

o Based on the public panoramic video data, an improve-
ment is found in the algorithm. A novel ABR algorithm
for 360° video is also proposed. Utilizing the viewport
prediction combined with the ABR algorithm, our pro-
posed framework can reduce the bandwidth consumption
by about 50%.

The viewport prediction model in this paper is inspired
by LiveDeep, which is a viewport prediction mechanism
proposed by Feng et al. [8] for live VR streaming for the
first time. However, LiveDeep predicts numerous redundant
tiles that users will not watch, which increases bandwidth
consumption. Compared with LiveDeep, there are three main
changes. Firstly, we use the modified AlexNet combined with
ResNet’s idea as the CNN module in LiveCL, which avoids the
loss of information in the forward propagation. Secondly, we
feed users’ fixation point maps into the LSTM module, while
LiveDeep only considers users’ viewing coordinate points.
Thirdly, we introduce a dynamic adjustment criterion threshold
mechanism for LiveCL, which can reduce the number of
predicted redundant tiles. In addition, we use a tile-based

ABR algorithm to make bitrate decisions based on viewport
prediction. We will explain and elaborate the above differences
in detail in section IV, V and VI.

The rest of the paper is organized as follows. Section
IT discusses related work. Section III presents our proposed
live VR video streaming framework. Section IV designs the
viewport prediction model and section V proposes a tile-based
ABR algorithm. Section VI provides our simulation results,
such as prediction accuracy metric, bandwidth savings metric,
and so on. Section VII summarizes the significance of our
proposed framework and explains the unresolved issues and
possible future improvements.

II. RELATED WORK

Compared with traditional video, panoramic video trans-
mission needs to consume additional bandwidth resources.
The existing strategies for reducing transmission bandwidth
can be divided into two categories: reduction before video
transmission and reduction during video transmission. Band-
width reduction before video transmission can be achieved
through multicast technology [9], which can multicast the
same video content to the corresponding edge server based
on the consistency of certain user viewing behaviors. This
technology can enhance the collaboration between the edge
server and the central server and is beneficial for improving
the system capacity. Since multicast technology is not the
main focus of this work, the details will not be explained
extensively. Another way to reduce the transmission bandwidth
before transmission is viewport prediction. As mentioned
before, the video segment inside the ROI is transmitted in
a higher resolution and the remaining areas are in a lower
resolution after predicting the users’ ROIL. In the process of
video transmission, a special adaptive bitrate algorithm for
panoramic video is generally used to select the download
bitrate suitable for the network environment at that time. It is
conceivable that when the network conditions are constantly
changing, the network throughput also changes from time to
time. This phenomenon is exacerbated in cellular networks
in different regions. For this reason, video providers generally
encode panoramic video streams into different bitrate levels in
advance and divide them into different video segments. The
following in section II is a brief overview of related works on
panoramic video transmission, viewport prediction, and ABR
algorithm.

Panoramic Video Streaming Framework. Similar to the
transmission of traditional real-time 2D video, a server-client
architecture is normally used. If more clients are involved, an
edge server may be needed to reduce the delay for the client
to obtain the video stream. Federico Chiariotti [10] presents
a Dynamic Adaptive Streaming over HTTP (DASH, ak.a
MPEG-DASH) standard based 360° video streaming transmis-
sion architecture and uses the Omnidirectional Media Format
(OMAF) standard to extend DASH and the streaming system
by specifying the spatial nature of video segments, which sup-
ports common projection methods and tile-based streaming.
But Federico Chiariotti did not point out the specific technical
details in the paper. Yaqoob ef al. [11] and Shafi et al. [12]
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propose a DASH-based panoramic video streaming process,
including panoramic video collection and stitching, panoramic
video projection, panoramic video encoding, panoramic video
packaging and transmission, panoramic video decoding and
rendering, and so on. They also mention several adaptive
streaming strategies, such as buffer-based adaptive streaming,
throughput-based adaptive streaming, viewport-based stream-
ing, and tile-based streaming. However, they did not explain
the specific implementation details and the dependencies of
each technical detail, which cannot verify the performance in
the actual environment. He et al. [13] demonstrate whether
the current network environment supports panoramic video
streaming. Zink et al. [5] describe the current challenges of
panoramic video transmission and propose a brief delivery
framework for offline panoramic video streaming. Fan et al.
[14] propose a more comprehensive offline panoramic video
delivery framework. However, most of these existing delivery
frameworks are all for offline panoramic videos and do not
verify the actual technical details.

Viewport Prediction. Many efforts have been made in the
field of viewport prediction, which can be roughly divided
into two categories: based on user trajectory and based on
video content. Petrangeli et al. [15] use a clustering algorithm
to classify user trajectories into different clusters, where the
users’ vision trajectories in each cluster are similar for a certain
period of time, and then perform regression fitting on the
viewport data for each cluster. However, since the temporal
characteristics of the user trajectory are not considered, their
model can’t learn the time change trend of the user trajectory.
Bao et al. [16] proposed a linear regression model combined
with a 3-layer perceptron model to predict the user’s future
viewport center, but the length of the prediction window is
only 100~500ms. Xu et al. [17] use a long short-term memory
(LSTM) [18] to encode the user’s historical viewing trajectory,
and combine the visual features to predict the user’s viewport
in the next 1s. Feng et al. [19] realize motion detection
and user viewing feature selection and tracking in panoramic
video based on the relationship between the user’s viewport of
interest and the moving objects in the video, and then update

the prediction model based on user feedback error recovery.
However, due to the limitations of the motion detection algo-
rithm, the model can only achieve good results in the scene
with easily distinguished foreground and background. If the
scene captured by the motion camera in real time or under a
dynamic background, the accuracy of the prediction will drop
sharply and even the bandwidth consumption will be huge. The
models mentioned above are based on the assumption that a
large amount of users’ historical viewing trajectory data are
available in an offline environment. However, when a user is
watching live VR video streaming, only a small amount of user
viewing data can be obtained, which greatly limits the training
and prediction accuracy of viewport prediction models. Feng
et al. [20] also used AlexNet [21] to extract video tiles that
users are more interested in from different video segments, and
modify the traditional convolutional neural network (CNN)
architecture to achieve the model’s real-time updating and the
user’s viewport prediction for each video. CNN cannot capture
the temporal relationship between the video frame and the
user’s trajectory, so the model cannot accurately predict the
user’s viewport when the user switches the viewport quickly.
Based on [20], Feng et al. [8] again add long short-term
memory (LSTM) to extract the temporal features of the user’s
viewport trajectory and propose the LiveDeep model. This
model directly takes the union of the prediction results of CNN
and the prediction results of LSTM as the final predicted user’s
viewport. This model improves the prediction performance
compared to the previous model [20] using CNN alone, but it
predicts numerous redundant tiles that users will not watch and
the bandwidth reduction is not obvious. In addition, the model
does not consider the salient feature of video frames and it is
difficult to accurately predict the user’s future viewport area
in the dynamic scene where the user frequently switches the
viewport.

ABR Algorithm. Since network conditions will change
over time, especially in cellular mobile networks, the through-
put in the network will also change accordingly. Therefore,
a video is usually divided into video segments, each video
segment contains a few seconds of video content, and each
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Fig. 1: Live 360° video streaming framework
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video segment will be encoded into different bitrate levels.
In this way, clients can switch the video bitrate to an ap-
propriate bitrate according to their own network conditions
to avoid stalling events and other situations when the net-
work status changes. The adaptive bitrate algorithm can help
clients automatically choose the appropriate video quality.
The traditional adaptive bitrate algorithm has been relatively
mature, but it is mainly aimed at traditional 2D videos. There
are currently four types of adaptive bitrate algorithms: rate-
based, buffer-based, hybrid model, and learn-based algorithms.
Rate-based algorithms mainly predict the available bandwidth
based on historical throughput. For example, in RB [7], the
segment fetch time in the past is used as the basis for bitrate
selection. Buffer-based algorithms make decisions based on
the client’s buffer occupancy. For example, in BOLA [22],
bitrate adaptation is formulated as a utility maximization
problem, and Lyapunov optimization is used to minimize
stall events and maximize video quality. The algorithm of
hybrid models mainly combines rate-based and buffer-based
algorithms. Common algorithms are MPC [23], DYNAMIC
[24], etc. Learning-based algorithms mainly use reinforcement
learning or machine learning to make bitrate decisions, such
as Pensieve [25], Fugu [26], etc. For panoramic video, the
adaptive bitrate algorithm mainly makes decisions for the tiles
in a video. Since the adaptive bitrate algorithm is not the main
focus of this work, a modified version of a classical ABR
algorithm is used in our work.

ITII. LIVE VR VIDEO STREAMING FRAMEWORK

The live panoramic video streaming mainly involves video
acquisition, video preprocessing, video transmission, and
video display. Fig. 1 shows the overall transmission frame-
work.

Video Acquisition. Generally, a professional panoramic
camera is used to capture video content in all directions.
Different from the traditional 2D video capture method,
panoramic video needs to be captured with a professional
camera which generally has multiple cameras and a wide
viewing angle. After shooting, the pictures in various direc-
tions are stitched to form a panoramic picture. The different
panoramas are composed into video segments, after which
video segments are sent to the preprocessing stage. Here
we use the professional panoramic camera Insta360 Pro2! to
capture the video. It has 6 independent lenses and can record
8K panoramic video.

Video Preprocessing. After acquiring the stitched
panoramic video, we need to project the video before
transmitting it. Converting 2D videos to 3D, the projection
methods [27] are involved. Common projection methods
include equirectangular projection (ERP) [3], cube projection
[28] (CMP, often used for 360° videos in Youtube), barrel
projection [29] (BRL, proposed by Facebook), even hybrid
equi-angular cubemap projection [30], etc. Fig. 2 shows the
image of a same panoramic video frame of skiing video
introduced in section VI after ERP and CMP projection. With

Uhttps://www.insta360.com/product/insta360-pro2/

the help of Insta360 Pro2, the projection stage can be doned
automatically and the default projection method is ERP. The
projected video can be encoded with the traditional video
coding standard, such as AVC/H.264 [4]. In order to adapt to
the dynamic time-varying network conditions, the complete
360° video is often cut into different video segments, and
then each video segment is encoded with a different bitrate,
which is often used in traditional video transmission. In
our work, we innovatively proposed the tile-based coding
of video segments to reduce the bandwidth of 360° video
transmission, that is, the video frames in each video segment
are divided into tiles, and then each tile is encoded with a
different bit rate. In the actual viewing process, the video
tiles that users will watch are predicted based on the viewport
prediction model we proposed, and then the bit rate of tiles
is dynamically adjusted with the help of the tile-based ABR
algorithm.

N =

(2) c™

(1) ERP
Fig. 2: The same video frame projected by ERP and CMP

Video Transmission. The transmission of panoramic video
is similar to that of traditional 2D video. Generally, it is
transmitted to the cloud server via Ethernet, WIFI, or cellular
network. The cloud server transmits the video stream to
the edge server, and then the client pulls the 360° video
stream after preprocessing from the nearest edge server. In
order to realize our adaptive transmission system, we use the
currently popular Dash.js* player as the fundamental frame of
our system. Dash.js player can allow us to embed our own
ABR algorithm, and play 360° video in combination with
A-Frame? framework. In the actual transmission process, the
Dash.js player generally downloads the Media Presentation
Description (MPD) file of the panoramic video stream from the
server, and then the adaptive algorithm makes bitrate decision
according to the predicted user’s viewport, MPD file, and
network status. The client can obtain the video segment in
the server according to the selected rate most suitable for the
network status. Then videos needs to be displayed through a
device that supports panoramic video playback.

Video Display. In order to give users an immersive ex-
perience, 360° videos generally need to be rendered with
professional headsets. At present, professional headsets on
the market include HTC VIVE [31], Sony PlayStation VR
[32], Oculus Rift [33], Google Cardboard, [34] and so on.
In addition to professional head-mounted devices (HMDs),
traditional PCs and mobile devices can also support the
playback of panoramic video, but the user experience of these

Zhttps://github.com/Dash-Industry-Forum/dash. js
3https://aframe.io/
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Fig. 3: LiveCL model architecture

is not as good as head-mounted devices. In our system, we
use a professional HTC VIVE Pro Eye* device to watch 360°
videos. The device can connect to the Dash.js player to render
VR video in real-time through WebXR API° embedded in A-
Frame framework. In addition, the device has the function of
eye-tracking. We can use the device to capture the users’ eye
position data and then feed it back to the server, and the server
updates the viewport prediction model in real-time.

IV. VIEWPORT PREDICTION

To consider the load pressure on the cloud server during
the actual transmission, we can deploy the viewport prediction
module at the edge server. As mentioned in the video trans-
mission subsection, videos will be transmitted to the cloud
server after preprocessing, and then the cloud server will
transmit videos to each edge server. Users will pull requested
video segments from the nearest edge server where viewport
prediction module can predict the video tiles that users will
watch, and this part of the video content can be transmitted
in high definition. In the following, we will mainly introduce
our viewport prediction module in detail.

A. Motivation

In the VR live broadcast scenario, the video stream data
is captured in real time. It is difficult to train and update a
perfect model because of the lack of a large amount of user
history viewing data. On the other hand, the live broadcast
scene has strict real-time characteristics, and the time overhead
of common methods is relatively large. Therefore, the offline
viewport prediction model is difficult to apply to live stream-
ing. Most of the existing methods for predicting the user’s
viewport are aimed at Video-on-demand (VOD). In the VOD
scenario, a large number of users have watched the panoramic
video in the past, and the video streaming and a large amount
of user trajectory data can be obtained in advance. So the
existing model can be trained offline. When new users watch
panoramic video, a well-trained model can predict the future

“https://www.vive.com/us/product/vive-pro-eye/overview/
Shttps://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API

viewport of users, which can solve the problem of viewport
prediction in most VOD scenarios. However, it can not be
realized in the scene of live 360° video streaming. First of all,
the video streams in VR live broadcast scenarios are captured
in real time, and there is also a lack of a large amount of
user viewing data, so there is no way to train the model in
advance. For this reason, we need an online training model
that can be updated in real time to solve the above problems.
In addition, this model should meet the basic conditions of
the live prediction model: online training, long-term iterative
update, and real-time prediction.

Although Feng et al. [8] proposed the online training model
LiveDeep, the user’s viewport predicted by the model is too
large, and many tiles that users do not watch are predicted.
Therefore, the model does not perform well in bandwidth
saving. The model trains different tiles of VR video frames
in real time by modifying the traditional CNN architecture,
and takes the changes in the viewport of user into account
by using LSTM [18]. The author selects the union set of
CNN and LSTM prediction results as the final prediction
result. In addition, the model has a cold start problem. For
the first video segment, the prediction effect will be poor
because the model is not trained and uses randomly initialized
parameters to predict the user’s viewport. The model simply
trains small tiles by dividing the sampled video frame into
5 x b tiles, which considers the spatial features of video
frame separately. Moreover, LSTM only processes the user’s
viewport coordinates in a past certain time period, which
considers the temporal characteristics alone. LiveDeep model
does not consider the spatio-temporal characteristics between
the user’s viewport trajectory and the video frame as a whole.
When there are multiple salient objects in the video, it is
difficult for the model to predict the user’s viewport in the
next time period. Since CNN is good at extracting the spatial
features of video frames and LSTM is good at learning the
temporal features of users’ trajectory data, we propose a
LiveCL model that mainly includes CNN module and LSTM
module. In addition, LiveCL jointly considers the temporal and
spatial characteristics between the user’s viewport trajectory
and the video frame.
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B. Model architecture

Our model aims to reduce the bandwidth of 360° video
streaming by predicting the user’s viewport. The realization
process pays attention to the basic requirements of the real-
time scenes mentioned above such as the relatively short
training period, online training, and real-time updating. The
overall architecture of our model can refer to Fig. 3. It is
mainly divided into two parts: video frame sampling and
model training. The LiveCL model is based on the CNN
module and the LSTM module is supplemented to realize
the prediction of the user’s viewport. Therefore, it is very
important to choose a suitable CNN module. We implement
the prediction function of our CNN module by modifying
the traditional AlexNet[21] architecture. The main difference
between this model and the LiveDeep [8] is that we process
fixation maps of user’s gaze point from the last video seg-
ment through the LSTM module, which considers the spatio-
temporal characteristics of the user’s viewport trajectory. We
have also noticed that the LiveDeep model predicted numerous
redundant tiles. So we introduce a mechanism for dynamically
adjusting the threshold, which is to dynamically adjust our
threshold according to the number of predicted tiles.

In order to meet the real-time requirements of VR live
video streaming, we uniformly sample k frames for the video
segment. Because a video segment contains a large number of
similar video frames, training all video frames will consume a
lot of time. We divide the sampled video frame into x xy tiles
spatially, so as to implement the tile-based ABR algorithm
later. Each training of the LiveCL model feeds %k * x x y
tiles to the CNN module to fully extract the spatial features
of the video frame. In order to consider the spatio-temporal
characteristics between user’s viewport trajectory and the
video frame, we feed the k fixation maps of user’s gaze
point in the user’s last video segment to the LSTM module
of the LiveCL model, which jointly considers the spatio-
temporal characteristics between user’s viewport trajectory and
the video frame.

C. Training process

1) CNN module

The main function of the CNN module is to determine
whether each tile is of interest to the user. Fig. 4 shows
the overall architecture of the CNN module. Here we use a
network similar to Alexnet, and then reduce the number of
parameters in traditional AlexNet by modifying the number
of input and output channels in the convolution layer. Using
the idea of ResNet [35], we feed the result of convolution layer
L5 and convolution layer L6 into the pooling layer, which can
avoid the loss of information in the forward propagation to a
certain extent.

Since the user viewing history data of the first video
segment can not be obtained while viewing the live VR video,
the user viewport of the first video segment needs to be
predicted using randomly initialized parameters. After the user
views the first video segment, the user views the viewport
trajectory data back to the server, which acts as a training
label based on the tiles in the user’s viewing area. The specific
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Fig. 4: CNN module

process is as follows: k frames are sampled from the current
video segment, and each frame is divided into x * y tiles.
In order to reduce the training time, we resize each tile into
(64, 64), and then feed all the tiles in sampled frames into
the CNN module. We use the cross entropy function as the
loss function to calculate the error between the predicted tile
and the real tile, and use the Adaptive Moment Estimation
(Adam) optimizer to update all the parameters of the CNN
module. For the next video segment, the updated model can
be used to predict the tile of interest to the user. Here we
need to strictly control the criteria for determining the block
of interest. When the output value of a certain tile is greater
than a certain threshold, we determine it as a tile of interest
to the user. The threshold is initially 0.5. In order to meet the
real-time requirements, we set the learning rate of the model
to 0.0001 and the epoch to 15 during the initial training. If
the loss is less than 0.15 during the training process, we will
terminate the training early, so that the training time can be
reduced as much as possible while meeting a relatively high
training accuracy.
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Fig. 5: LSTM module

2) LSTM module

The main function of the LSTM module is to assist the
prediction of the CNN module, referring to the LSTM section
of the LiveCL model architecture in Fig. 3. Fig. 5 shows the
structure of our LSTM module. Specifically, the fixation maps
in the previous video segment viewed by users are input into
the LSTM module in chronological order, so that LSTM [18]
can learn the temporal characteristics of the user’s viewport
trajectory. During training, after the user watches the video
segment, the viewport trajectory data is fed back to the server.
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The server generates fixation maps based on the viewport
trajectory data and feeds them to the LSTM module. The
number of hidden layers in the LSTM module is 6 and the total
number of layers is 2. The initial learning rate is set to 0.001,
and the training epoch is set to 50. We use the mean square
error (MSE) as the loss function to calculate the error between
the predicted fixation map and the real fixation map, and use
the Adaptive Moment Estimation (Adam) optimizer to update
all the parameters of the LSTM module. We dynamically
adjust the criterion threshold of the CNN module according
to the prediction result of the LSTM module, which solves
the problem of the excessive number of tiles predicted by
LiveDeep to a certain extent. We combine the user’s viewport
area predicted by the CNN module and the LSTM module
and locate the index of the tiles in it. We adjust the threshold
according to the following rules: we assume that the total
number of tiles in a frame is m (m = z * y) and the number
of predicted tiles is n. We can adjust the threshold according
to the size of the ratio p = ;. The larger the p, the larger the
criterion threshold. For specific rules, please refer to Table L.

TABLE I: Threshold adjustment rules

ratio p threshold
05<p<1 0.8
03<p<05 0.7
0.24<p<0.3 0.6
0<p<0.24 0.5

In order to take the spatial characteristics of users’ viewport
trajectory changes into account, we convert fixation point
coordinates into a two-dimensional matrix called fixation point
maps. We use the user viewport trajectory dataset published
by Wu et al. [36], which contains 18 videos for 48 different
levels of users to watch, and records the timestamp of 48
users watching different videos and its corresponding head
orientation and head position. This dataset logs quaternions
(gx, qy, qz, qw) to represent the direction of movement of
the user’s viewport. Specifically, we use Formula 1 to convert
the quaternion into the direction of the user’s viewport, where
(x, y, z) is the direction vector of viewport after quaternion
conversion.

T 2xqr*qz+2*qy*quw
Yy | = | 2%xqyxqz+2xqr*quw @))
z 14 2% qx? —2xqy?

In order to obtain the projection point coordinates (xp, yp)
in projected frame after equiangular rectangular projection
(ERP), it is necessary to calculate the vertical angle ¢ and
horizontal angle 6 of the direction vector. We can get the
projection point coordinates according to Formula 2:

2 LW W
{ P } =[ 380 )
yp R EY:i

Finally, we can use the Gaussian Blur function

GaussianBlur() in OpenCV® to convert the two-dimensional
coordinates after ERP projection into a fixation point map.
For the process mentioned above, please refer to Fig. 6.

Ohttps://docs.opencv.org/4.5.0/d4/d86/group__imgproc__filter.html
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Fig. 6: The workflow of obtaining the fixation point map
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V. PROPOSED ABR ALGORITHM

Traditional adaptive bitrate algorithms mainly focus on 2D
videos, which makes a bitrate decision for the entire video
before downloading every segment. Directly using traditional
ABR algorithms may be a naive solution for 360° videos and
every tile will have the same quality. As for panorama videos,
videos are normally cut into segments and each segment is
separated into tiles before transmission. Taking into consid-
eration of the different priorities of tiles, tiles can be chosen
with different bitrates. This motivates the design of a novel
adaptive bitrate algorithm for 360° videos.

The current study of traditional adaptive bitrate algorithms
mainly falls into different groups, as explained earlier. Dif-
ferent types of algorithms can have individual characteristics.
Rate-based algorithms can directly match the network through-
put, while buffer-based algorithms can significantly reduce the
potential stalling events. Hybrid algorithms can take advantage
of both rate-based and buffer-based algorithms. Dynamic[24]
is one of the hybrid algorithms, which is also one of the
adaptive bitrate algorithms in Dash.js.

The theory of Dynamic is the combination of RB [7] and
BOLA [22]. Before downloading every segment, the algorithm
will first check the buffer occupancy. If the buffer level is
above the threshold, BOLA will be used to make bitrate
decisions. In this circumstance, the buffer is relatively stable,
and BOLA can make a higher bitrate choice. If the buffer level
is below the threshold, throughput (RB) will be used. This
often occurs when user starts to watch a video or the network
condition drop quickly. With RB, the bitrate decisions are
made based on the past network throughput, and can directly
match the network. BOLA in this situation may choose the
lowest bitrate for a long time.

BOLA
Per-tile

Viewport Buffer [High
Area 5> Occupancy
i Bitrate
Viewport Throughput|———»
L Prediction

W)

Low

y Lowest Bitrate
Other -

Area

Fig. 7: Viewport-driven ABR algorithm

Moving from 2D to live panorama videos, certain modifi-
cations are made based on the original version of Dynamic.
Combining the results from the LiveCL model, the overall
process of the proposed viewport-driven adaptive bitrate al-
gorithm is shown in Fig. 7. After the viewport prediction,
the tiles can be split into two parts, tiles cover the predicted
viewport area and other tiles. For tiles that cover the viewport
area, those tiles have relatively higher priority and should
be transmitted in higher quality. To make the proper bitrate
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decisions, the algorithm will first check the buffer occupancy.
Similar to Dynamic, it chooses BOLA when buffer is stable
while utilizing RB when buffer is about to deplete. However,
there are mainly two modifications to suit panorama video in
live broadcast scenarios. First, the bitrate adaptations are more
fine-grained. Taking into consideration of different statuses
of tiles, bitrates of tiles within a frame can be different.
As tiles are transmitted parallel through HTTP, the bitrate
adaptations are made for every tile. Second, the threshold of
buffer occupancy is decreased. Compared to video on demand,
video players in live streaming have smaller buffer and the
video segments are also shortened. With shorter segments, the
delay can be reduced. Also, users can enjoy higher quality
earlier when the network condition becomes better. As for
tiles in other areas, the tiles still need to be transmitted, in
case of some sudden unpredicted head movements. The chosen
bitrate of those tiles can be encoded with the lowest quality.
The proposed ABR algorithm is shown in Algorithm 1.

Algorithm 1 Bitrate adaptation for 360 video

repeat
before downloading a new segment
for tiles within a segment do
if tile is in the predicted viewport then
check buffer occupancy b
if b > Binreshota then
choose bitrate based on BOLA
else
choose bitrate based on throughput
end if
else
choose the lowest bitrate
end if
end for
until end of video

VI. RESULTS AND EVALUATION

All the data of the simulation experiment are based on the
360° video dataset contributed by Wu et al. [36]. Table II
shows the information about the 360° video in our experiment.
We implement LiveCL model with PyTorch 1.8 in Python
3.7 of windows 10 and use CUDA to accelerate the training
process.

TABLE II: Video information

Video name Content Category Length
Conanl Connan360°-Sandwidth ~ Performance 2/44"
Skiing Freestyle Skiing Sport 3/20"
Alien Google Spotlight-Help Film 4'53"
Conan?2 Conan360°-Weird Al Performance 2/52"
Surfing GoPro VR-Tahiti Surf Sport 3/25"
War The fight for Falluja Documentary ~ 10"55"
Cooking 360° Cooking Battle Performance 731"
Rhinos The Last of the Rhinos ~ Documentary  4'52"

We mainly compare the proposed LiveCL with LiveDeep,
so the number of tiles divided in the experiment is 5 * 5
mentioned in [8]. Fig. 8 shows the result of some frames

predicted by LiveCL and LiveDeep. (a)~(c) are the prediction
results of LiveCL, where the blue box is the predicted tile, and
the red box is the tile actually viewed by the user; (d)~(f)
are the prediction results of LiveDeep, where the cyan box is
the predicted tile, and the red box is the tile actually viewed
by the user. As you can see from the Fig. 8, the number of
tiles predicted by LiveCL is much less than that predicted by
LiveDeep. In order to verify the effectiveness of our proposed
model, we choose tile, frame, time, and bandwidth metrics
as our evaluation metrics, which will be described in detail
below.

(f) Skiing-LiveDeep

(d) Cooking-LiveDeep

(e) Conanl-LiveDeep

Fig. 8: The result of viewport predicted by LiveCL and
LiveDeep: (a)~(c) by LiveCL and (d)~(f) by LiveDeep

A. Tile metric

For the convenience of the following description, we assume
that the total number of tiles divided by a frame is m (m = 5x
5 = 25), the number of predicted tiles is n, the number of tiles
actually viewed by the user is t, the number of predicted tiles
which are viewed by the user is a, and the number of predicted
tiles which are not viewed by the user is b (n = a + b). To
this end, we calculate the following metrics:

o TileAccurancy indicates the proportion of the number of

tiles correctly predicted by the user. Refer to Formula 3.

a+(m—t—>)
m

3)

TileAccurancy =

o TileRecall represents the user’s experience. The higher
it is, the better the user’s viewing experience is. Refer to
Formula 4.

TileRecall = % (4)

e TilePrecision indicates the level of bandwidth. The
higher the index, the more obvious the bandwidth reduc-
tion. Refer to Formula 5.

TilePrecision = a4 (&)
n

In Fig. 8(c), these parameters are m=25, n=0, t=4, a=4 and
b=2. The metrics are TileAccurancy=92%, TileRecall=100%
and TilePrecision=66.67%.

Something needs to be noted that three metrics of tile
can be calculated for each frame. For a video, we calculate
all these metrics of all sampled frames and then take the
average value as the average metrics of the video. Since the
dataset [36] provides viewport data for 48 users, we end up
averaging these metrics across all users for a single video.
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Fig. 9: Tile metrics comparison between LiveCL and LiveDeep
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Fig. 10: (a) Average FrameAccurancy comparison; (b) Average number of predicted tiles comparison; (c) Average bandwidth
of each frame between LiveCL-driven adaptive transmission and full high-resolution transmission

Fig. 9 shows the metrics comparison between LiveCL and
LiveDeep: the graph on the left shows the TileAccurancy
per video, the graph in the middle shows the TileRecall per
video, and the graph on the right shows the TilePrecision
per video. From the Fig. 9, we can see that the TilePrecision
metric of Surfing video is relatively low, because the video
scene is mainly a dynamic scene of surfing, and the user’s
viewport switches more frequently when watching this video.
It is difficult for LiveCL to maintain a high TilePrecision
while maintaining a relatively high TileRecall. Here LiveCL
chose a higher TileRecall to provide users with a perfect
viewing experience as much as possible, but the corresponding
bandwidth consumption will also increase a lot because many
redundant tiles that users will not watch are predicted.

As mentioned above, we introduce a mechanism of dynam-
ically adjusting the criterion threshold in LiveCL to solve the
problem of numerous redundant tiles which are predicted by
LiveDeep. Redundant tiles are not viewed by users. This is
also reflected in the TileAccurancy and TilePrecision metrics
in Fig. 9, where the LiveCL model predicts tiles with greater
TileAccurancy and TilePrecision than the LiveDeep model.
In addition, the TileRecall metric in Fig. 9 reflects that the
LiveCL model is slightly lower than the LiveDeep model. This
is also caused by the excessive number of tiles predicted by the
LiveDeep model, that is, the tiles predicted by the LiveDeep
model basically completely cover the user’s viewport, but there
are also a lot of redundant tiles at the same time which will
not be viewed by the user.

B. Frame metric

Similar to the tile metrics, the frame metric reflects the
accuracy of the model prediction in a certain video. We
stipulate that for a certain sampled frame, only when the
predicted viewport area completely covers the actual viewport
area viewed by the user, this frame can be counted as an
accurate prediction frame, which is also mentioned in [8].
We count the accurately predicted frames among all sampled
frames for a certain video, and calculate FrameAccurancy
according to Formula 6, where correctFrame is the number
of all accurately predicted frames and sampleFrame is the
number of all sampled frames.

tF'
FrameAccurancy = gorrectrame 6)
sampleF'rame

The higher the FrameAccuracy, the higher the accuracy of
the model predicting the viewport area of the user watching
a certain video. Something should also be noted that for a
certain video here, we count the FrameAccurancy metric of 48
users, and then take the average value as the average FrameAc-
curancy of the video. Fig. 10 (a) shows the FrameAccuracy
metric for different videos. The FrameAccuracy metrics of the
LiveCL model and the LiveDeep model are basically close,
which means the two models can predict the future viewport
of users in most cases.

C. Bandwidth metric

In order to actually compare the difference in the number
of predicted tiles that users are interested in between the two
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models, we count the changes in the number of predicted tiles
in all sampled frames. As before, it is also the average of all
users for a certain video. Fig. 10 (b) shows the comparison
of the number of tiles predicted by the two models. We can
see that LiveCL predicts that the average number of tiles that
users are interested in is 6, which is also the effect of the
dynamic adjustment criterion threshold mechanism mentioned
above. Correspondingly, LiveDeep predicts that the average
number of tiles that users are interested in is 11. Compared
to LiveDeep, LiveCL transmits fewer high-resolution tiles and
reduces transmission bandwidth more significantly. In order to
simulate the transmission bandwidth in a real scenario, we use
ffmpeg’ to encode all the frames that are divided into tiles into
four bit rate levels for 8 videos in Table II. Table III shows
the average bandwidth in bps units consumed by transmitting
each tile with different bitrate levels for different videos.

TABLE III: Tile bitrates [bps] at different levels

Video name Levell Level2 Level3 Level4

Conanl 18286.0 58193.0 135869.0 2466442.0
Skiing 38100.0 149997.0 389970.0 7781989.0
Alien 20417.0 71849.0 188486.0 7781989.0
Conan2 24370.03 88758.32 238364.4  4275851.87
Surfing 50935.38  209369.63 517066.71  10611551.4
War 33806.0 131147.0 338441.0 5844169.0
Cooking 25740.0 80397.0 197771.0 3189401.0
Rhinos 16597.0 57806.0 142524.0 3620377.0

The ABR algorithm makes a decision on a certain level
as the bitrate of downloading a certain tile according to the
predicted viewport area and the state of the network. For
example, a higher bitrate is selected for tiles in the user’s
viewport area, and the bitrate of tiles farther from the field
of view is sequentially reduced. We transmit the tiles in the
predicted viewport area at the Level? bitrate, and the rest
of the tiles are transmitted at the Levell bitrate. Fig. 10
(c) shows bandwidth consumption of transmitting a frame
between viewport-driven adaptive transmission and full high-
resolution transmission. (All tiles are transmitted at the Level2
bitrate in full high-resolution transmission.) Note that the
bandwidth value in Fig. 10 (c) is given in scale, so it is a
bit different from the values in Table III.

D. Time consumption

The live broadcast scene is very demanding on time. As
mentioned above, panoramic video is generally transmitted
in video segments, so the model training and prediction time
should not exceed the video segment time. The timeline of the
video segment in our experiment is 2s. The specific hardware
configuration in our experiment is an Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz CPU, 32.0 GB RAM, and NVIDIA
GeForce RTX 3060 GPU. Fig. 11 shows the time of LiveCL
processing each video segment for different videos, which
proves that the processing time of each video segment is less
than 2s. So LiveCL meets the basic requirements of the real-
time live broadcast environment. The Conan2 video’s average
processing time of each video segment in Fig. 11 is the longest,

"https://www.ffmpeg.org/ffmpeg-all.html
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Fig. 11: Average time consumption in LiveCL

which is 1.11s. It may be because the video is a shot of an
action science fiction movie scene, and there are more objects
involved in sample frames. Therefore, the CNN and LSTM
modules are trained in all epochs to minimize the loss between
the predicted viewport area and the user’s actual viewport area.

VII. CONCLUSION AND FUTURE WORK

In this paper, a viewport-driven adaptive transmission
framework for live 360° video is proposed. By analyzing that
the biggest problem of 360° video transmission is the huge
bandwidth consumption, we propose a viewport prediction
model called LiveCL to predict the user’s viewport area, which
solves the problem that LiveDeep predicts many redundant
tiles that users will not see. The LiveCL model includes CNN
module and LSTM module. Combined with the prediction
results of LSTM, a mechanism for dynamically adjusting the
criterion threshold is introduced in the CNN module. Through
a series of experiments compared with LiveDeep, LiveCL can
reduce the prediction of redundant tiles as much as possible
while maintaining high prediction accuracy. Combined with
the ABR algorithm, our solution reduces the bandwidth of
360° video transmission by 50%. It also meets the need of live
video streaming scene in the model training and prediction
time. The 360° live streaming optimization framework we
propose may greatly reduce the transmission bandwidth, which
may bring new impetus to the popularization of VR videos.

There are still unresolved issues in our work. In subsection
VI-A, the accuracy rate of LiveCL model prediction is still
relatively low in scenarios where users frequently switch
their viewport. In the future, the salient features of video
frames may be considered to improve the prediction accuracy
of viewport prediction module for dynamic scenes. For the
situation where the model prediction is wrong, the paper does
not give an analysis and solution. If the predicted viewport
area in the live broadcast scene does not include the user’s
actual viewport area, the user’s viewing experience will be
very poor, and the user will even get dizzy. In addition, we
need to consider how to optimize viewport prediction of the
first video segment where prediction module uses random
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parameters. For example, transfer learning [37] can help an
untrained model initial parameters.
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