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Cloud server aggregates a large amount of genome data from multi genome donors to facilitate scientific research. However, the
untrusted cloud server is prone to violate privacy of aggregating genome data. Thus, each genome donor can randomly perturb
her genome data using differential privacy mechanism before aggregating. But this is easy to lead to utility disaster of aggregating
genome data due to the different privacy preferences of each genome donor, and privacy leakage of aggregating genome data because
of the Kinship between genome donors. The key challenge here is to achieve an equilibrium between privacy preserving and data
utility of aggregating multiparty genome data. To this end, we proposed federated aggregation protocol of multiparty genome data
(MGD-FAP) with privacy-utility equilibrium for guaranteeing desired privacy protection and desired data utility. First, we regarded
the privacy budget and the accuracy as the desired privacy-utility metrics of genome data respectively. Second, we constructed the
federated aggregation model of multiparty genome data by combining random perturbation method of genome data guaranteeing
desired data utility with federated comparing update method of local privacy budget achieving desired privacy preserving. Third, we
presented the MGD-FAP maintaining privacy-utility equilibrium under the federated aggregation model of multiparty genome data.
Finally, our theoretical and experimental analysis showed that MGD-FAP can maintain privacy-utility equilibrium. The MGD-FAP
is practical and feasible to ensure the privacy-utility equilibrium of cloud server aggregating multiparty genome data.

Index Terms—Multiparty genome data aggregation, cloud server, federated comparing, strategic game, privacy-utility equilibrium.

I. INTRODUCTION

INCE the cost of sequencing has decreased significantly,
large-scale and high-dimensional genome data have been
produced!. Genome data have been widely used in scientific
research [1]. Because a single institution usually only pos-
sesses a limited number of genome data, genome data need
to be aggregated to cloud server for supporting meaningful
scientific research [2], [3]. Genome data can uniquely identify
individuals and keep stability without changing over time, and
it is associated with individual information such as heredity,
disease, phenotype, and kinship. Thus, the untrusted cloud
server is easy to bring about the risk of privacy leakage of
aggregating genome data for scientific research.
Cryptographic techniques can achieve privacy preserving
of multiparty genome data aggregation (MGDA) [2], [3], but
cryptographic techniques have large computational overhead.
Differential privacy is a strict privacy preserving framework
without considering all the background knowledge except a
single record [4]. Therefore, differential privacy has been
used to to protect sensitive information of the genome data
(51, [6], [71, (8], [9], [10], [11], [12], [13], [14], [15], [16]
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and dependent genome data [17]. However, since differential
privacy has privacy-utility monotonicity [18], these works can
only achieve the privacy-utility tradeoff of genome data and
dependent genome data. Privacy-utility tradeoff implies that
one thing increases and the other inevitably decreases between
privacy protection and data utility. Moreover, these works do
not consider the differential privacy protection of aggregating
multiparty genome data.

But if differential privacy is directly used for aggregating
multiparty genome data, it will lead to utility disaster due to
the different privacy preferences of each genome donor, and
privacy leakage due to the kinship between genome donors.
The following example specifically explains these serious
results.

Example 1. In aggregating multiparty genome data with
differential privacy, some genome donors may use a smaller
privacy budget because of their concern for privacy, and other
genome donors may use a larger privacy budget because they
do not pay attention to privacy. This can lead to utility disaster
of aggregating genome data, such that cloud server gets very
less utility of aggregating genome data. Because of the kinship
between genome donors, this also will bring the risk of privacy
leakage.

Thus, the key challenge is to balance the privacy protection
and data utility of aggregating genome data according to
Example 1. To solve this problem, we proposed MGD-FAP
ensuring privacy-utility equilibrium to support meaningful
scientific research. Specifically, we gave the definitions of
desired privacy preserving metric and desired data utility
metric. We provided a federated comparing method that can
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update each genome donor’s local privacy budget to obtain the
desired privacy budget. We presented the random perturbation
method of genome data guaranteeing desired data utility.
We constructed a federated aggregation model of multiparty
genome data by combining the federated comparing update
of local privacy budget achieving desired privacy preserving
and the random perturbation method guaranteeing desired
data utility. We presented MGD-FAP based on the federated
aggregation model of multiparty genome data. Our theoretical
and experimental results demonstrated that the MGD-FAP can
keep privacy-utility equilibrium. Our protocol can be used for
federated aggregation of multiparty genome data to solve the
problems of utility disaster and privacy leakage. Our main
contributions are as follows.

(1) We stated the desired privacy-utility metrics of genome
data. We used the federated comparing update of local privacy
budget achieving desired privacy preserving, and presented
the random perturbation method of genome data guaranteeing
desired data utility.

(2) We constructed the federated aggregation model of mul-
tiparty genome data by combining federated comparing update
of local privacy budget achieving desired privacy preserving
and random perturbation method of genome data guaranteeing
desired data utility, and gave the MGD-FAP achieving privacy-
utility equilibrium.

(3) We theoretically proved that the MGD-FAP satisfies the
desired differential privacy preserving and achieves the desired
data utility. We also theoretically proved MGD-FAP ensuring
the privacy-utility equilibrium based on strategic game. More-
over, our experimental results confirm the theoretical analysis
results.

This paper is organized as follows. Section II introduces the
related work. Section III introduces the preliminaries. Section
IV presents the aggregation model of multiparty genome data
and design goal. Section V presents the federated aggregation
model and protocol of multiparty genome data, and takes
a theoretical analysis for our protocol. Section VI makes
the numerical evaluation on the privacy-utility equilibrium of
MGD-FAP. Section VII concludes this paper.

II. RELATED WORK

This section introduces the related work from the following
four aspects, and analyses the gap between existing work and
contribution of this paper.

A. Correlated Data with Differential Privacy

Kifer and Machanavajjhala [19] had shown that corre-
lated data with differential privacy is easy to lead to weak
privacy preserving. Therefore, the current work has carried
out extensive research on differential privacy preserving of
correlated data. Chen et al. [20] proposed edge differential
privacy by introducing correlation coefficient. Considering
the background knowledge of correlated data, Kifer and
Machanavajjhala [21] proposed the privacy preserving model
of Pufferfish. Yang et al. [22] proposed Bayesian differential
privacy of correlated data under Pufferfish model. Song et
al. [23] proposed Pufferfish privacy mechanism, Wasserstein

mechanism, for correlated data. Wang and Wang [24] proposed
the correlated tuple differential privacy in correlated tuple data
release. However, these work only achieves the privacy-utility
tradeoff of correlated data, but do not reach the privacy-utility
equilibrium.

B. Genome Data Research with Differential Privacy

Homer et al. [25] demonstrated that statistical test of a
complex genome mixture can determine whether a specific
individual is in the control group or the case group, and
obtain individual’s genome data. Therefore, it is urgent to
protect the privacy of participants and the confidentiality of
genome data research. At present, the existing work has carried
out extensive research on genomic privacy preserving based
on differential privacy. Differential privacy can prevent an
attacker with prior knowledge from leaking the individual
privacy in genome-wide association research [5], [6], [7], [8].
Because genome data is highly sensitive, differential privacy
has used to privacy preserving of genome data sharing [9],
[10], [11], [12]. In genome healthcare, genome donors worry
about privacy leakage, while healthcare providers worry about
disclosure of trade secrets. Thus, differential privacy also used
to achieve privacy preserving of genome healthcare [13], [14],
[15]. However, genome data research with differential privacy
only achieves the privacy-utility tradeoff. Therefore, Liu et al.
[16] proposed adaptive differential privacy of categorical data
to achieve desired privacy preserving and desired data utility
of genome data sharing. However, adaptive differential privacy
of categorical data can not be directly used for aggregating
multiparty genome data to achieve privacy-utility equilibrium.

C. Dependent Genome Data with Differential Privacy

Because genome donors have kinship, individual genome
data may also disclose sensitive information about her family
members’ genome data [26], [27]. Thus, Almadhoun et al.
[17] introduced the differential privacy for genome data with
the probabilistic dependence relationship between dependent
tuples and achieves rigorous privacy preserving. However,
dependent genome data using differential privacy can only
achieve the privacy-utility tradeoff.

D. Federated Genome Data with Differential Privacy

In order to get high quality statistical patterns and rela-
tionships between genetic variants and diseases, cloud server
usually aggregates a large amount of genome data from multi
institutions. But the major problem of aggregating genome
data cross-institution is privacy concerns. Thus, existing work
uses cryptography methods achieving privacy preserving of
federated genome data [2], [3], [28], [29], such as secure mul-
tiparty computation, homomorphic encryption, and Intel SGX.
Blockchain-based time-stamping scheme [30] can also be used
to guarantee privacy of federated genome data in cloud storage.
However, cryptography methods require large computational
overhead for huge scale genome data aggregation. Moreover,
the existing work does not consider federated aggregation of
multiparty genome data using differential privacy.
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To sum up, the existing work does not consider privacy-
utility equilibrium of aggregating genome data with differen-
tial privacy. In this study, we achieve this goal by constructing
a federated aggregation model and proposing interactive pro-
tocol for aggregating multiparty genome data.

III. PRELIMINARIES

This section introduces the preliminaries to genome [8],
differential privacy [4], local differential privacy [31], and
strategic game [32].

A. Genome

Individual’s genome data are a sequence of the diploid
genotype, and each diploid genotype takes values in {0, 1,2}.
For each gene locus, two alleles are observed at the same
position, which a major allele is observed at a higher frequency
and a minor allele is observed at a lower frequency. B
presents the major allele and b presents the minor allele, where
B,b e {A,C,G, T}. BB is encoded as 0, Bb as 1, and bb as
2.

B. Differential Privacy

A dataset z is a collection of records, in which z; represents
the ¢-th element or subset in the dataset . A natural measure
of distance between two databases x and y will be Hamming
distance d(z,y).

Definition 1 (Differential Privacy). A random mechanism
M is (e, d)-differential privacy if for all S C Range(M) and
for all x,y such that d(z,y) < 1, then

PM(z)e S)<efPM(y)eS)+§ ()

When § = 0, M is e-differential privacy.

Differential privacy guarantees that the probability distri-
bution of response to any query is the same independent of
any individual opting presence or absence in the database. To
all databases = and y with d(z,y) < 1, when M is (g,d)-
differential privacy, the mechanism M is e-differential privacy
with probability at least 1 — §.

For any query function f :  — R¥, Laplace mechanism
(LM) Lap( Aé}f ) is e-differential privacy, where R denotes the
set of all real numbers, and A;f = maxg -1 ||f(7) —
Ff@W)||1 is ¢1-sensitivity. Unless otherwise stated, the differ-
ential privacy mechanism mentioned in the follow-up of this
paper refers to Laplace mechanism.

Definition 2 (Local Differential Privacy). A random mech-
anism M is (e, §)-local differential privacy if for any input by
and b, and for any possible output b, then

P(M(b) =b) < EP(Mb) =) +5 ()

When 6 = 0, M is e-local differential privacy.

The randomized response (RR) is a major random pertur-
bation mechanism of local differential privacy [33]. For any
input b € {0, 1} of the randomized response, the probability of
correlct response is % and the probability of wrong response
is =

Moreover, differential privacy has properties of post-
processing [4] and parallel composition [34].

Theorem 1 (Post-Processing). A random mechanism M :
2 — R on dataset x is (e, §)-differential privacy. Let f : R —
R’ be a random mapping, then fo M : x — R’ is (¢,0)-
differential privacy.

Theorem 2 (Parallel Composition). Each random mech-
anism M; is ¢;-differential privacy. x; is arbitrary disjoint
subsets of the input dataset x. The parallel composition of
M, is max{e; }-differential privacy.

C. Strategic Game

Definition 3 (Strategic Game). Strategic game is a triplet
G = (N, (Si)ien, (ui)ien)
(1) Players set N = {1,---,n}.
(2) Strategies set .S; of player : € N.
(3) Utility function u; : S1 X --- x S, — R of player i € N.
Definition 4 (Nash Equilibrium). A vector s = (s1,- -, $p)
of strategies is Nash equilibrium in strategic game if
wi(si,5_5) > uis;,s_;) for any strategy s; of each player
1 € N, where s_; means the strategies vector of other players
except for strategy s; € S; of player i € V.

IV. AGGREGATION MODEL AND DESIGN GOAL

In this section, we present the aggregation model of multi-
party genome data, give privacy threat model, define desired
privacy-utility metrics, and identify design goal.

A. Aggregation Model of Multiparty Genome Data

The aggregation model of multiparty genome data is shown
in Fig. 1. This model consists of multi genome donors, cloud
server, and multi genome users. Genome donors store their
genome data on cloud server to save the cost of long-term
storage and management. Genome donor can be hospital
or human individual. Cloud server aggregates genome data
of multi genome donors. Cloud server analyzes aggregating
multiparty genome data and shares genome data or analysis
results. The cloud server can be a data storage and processing
center of a hospital, a third party, or a human individual.
Genome users request the cloud server to query genome data
or analysis results. Cloud server answers to the corresponding
genome data or analysis results according to the query of
genome users. Genome users can be biomedical researchers
in medical center or genome research center, or healthcare
provider.

Genome User |
Genome User m

Genome Donor 1 Cloud Server Aggregating
Multiparty Genome Data
(Storage, Analysis,

Sharing, and Healthcare)

Genome Donor n

Fig. 1. Aggregation model of multiparty genome data.
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B. Privacy Threat Model

In reality, cloud server and genome users are not trusted.
Therefore, honest genome donors are unwilling to send
genome data to the cloud server because of privacy concerns.
Considering self-interest of genome donors, genome data
donors are willing to send genome data to the cloud server
under the maximal privacy preserving. This study assumes that
cloud server is semi-honest. Thus, the cloud server honestly
performs the storage, analysis, sharing, and healthcare of
aggregating multiparty genome data. However, cloud server
is curious about the sensitive information on genome data and
which genome donor presence in the aggregating multiparty
genome data. Similarly, we assume that genome users are
also semi-honest. Genome users honestly execute the query
request to the cloud server. Because cloud server honestly
shares genome data or analysis results, each genome user
can obtain correct response to the corresponding query. But,
genome users also want to obtain sensitive information about
genome data and which genome donor presence in aggregating
multiparty genome data. Moreover, considering genome users
is also self-interest. Genome users want to obtain the genome
data and analysis results under the maximal data utility.
Therefore, the cloud server wants to obtain the desired data
utility of aggregating multiparty genome data according to the
maximal data utility of genome users.

C. Desired Privacy-Utility Metrics

Because privacy budget quantifies privacy loss of differ-
ential privacy, we use privacy budget as the desired privacy
metric. Each genome donor selects the desired privacy budget
according to the normalized expectation estimation error. The

’ !
. . . . M Pz ) |e, s —x
normalized expected estimation error is Yo (\537')I| j .7|7
k3

where x;; € x;, x;; € {0,1,2}, and x; = (z41, -+, Tim) s
the m-dimensional diploid genotype vector of genome donor
i. x;] € z, x;j e {0,1,2}, and z; = (z,---,a;,)
denotes the m-dimensional diploid genotype vector of genome
donor ¢ after random perturbation. P(x;j) is probability of

randomly perturbing x;; to x; ;- || is the number of all diploid
genotypes in z;.

Because the genome data are categorical data of 0, 1, and
2, it should also be categorical data of 0, 1, and 2 after using
differential privacy mechanism, otherwise the genome data
are completely unavailable because of random perturbation.
Therefore, we use accuracy [6] as the desired data utility

U to measure the proportion of correct diploid genotypes
EaEH

after random perturbation. The accuracy is U = EA
and |z;|U = |z;(x;| represents the number of the same
diploid genotypes between vector x; and x;. We use z =
(x1,---,x,)" representing m-dimensional diploid genotype
matrix of n genome donors, |z| is the number of all diploid
genotypes in x, and |x1| + -+ + |z,| = |z|. Because
each genome donor ¢ provides the desired data utility being
U= ‘wilglm il , this can ensure that the desired data utility of
the aggregating genome data of n genome donors is also

2 E

U

3)

Therefore, we use accuracy as the desired data utility metric
in this study, which not only guarantees the desired data utility
of each genome donor, but also guarantees that cloud server
gets the desired data utility of aggregating multiparty genome
data.

D. Design Goal

Because of each genome donor selecting different privacy
budget and existing the kinship between genome donors,
aggregating multiparty genome data satisfying differential
privacy will lead to the extreme results of utility disaster and
privacy leakage.

Combining the privacy threat model and the desired privacy-
utility metrics, it is preferable to study the federated aggrega-
tion model and protocol of multiparty genome data ensuring
privacy-utility equilibrium.

V. OUR MODEL AND PROTOCOL

This section introduces our model and protocol, and theoret-
ically proves our protocol keeping privacy-utility equilibrium.

A. Federated Aggregation Model of Multiparty Genome
Data

Combining the aggregation model of multiparty genome
data in Fig. 1, we construct a federated aggregation model
of multiparty genome data in Fig. 2. As shown in Fig. 2, the
cloud server sends the desired data utility to genome donors
according to the maximal data utility of genome users. In
this way, the federated aggregation model can achieve the
desired data utility of multiparty genome data. Each genome
donor encodes genome data to diploid genotype according to
the allele frequencies. Each genome donor randomly perturbs
diploid genotype data using differential privacy mechanism
under desired data utility. However, genome donors have
different privacy preferences when randomly perturb their
diploid genotype data using differential privacy mechanism.
Therefore, cloud server obtains the global privacy budget by
federated comparing the aggregating local privacy budget of
multi genome donors. In order to achieve the desired privacy
protection of each genome donor, each genome donor updates
the global privacy budget and regards it as desired privacy
budget. The specific process of constructing a federated ag-
gregation model of multiparty genome data is as follows.

(1) Encoding of genome data

This study encodes genome data to diploid genotype data
to achieve privacy preserving using differential privacy mech-
anism. For m-dimensional genome data of i-th genome donor,
genome donor encodes it to m-dimensional vector x; by com-
bining her genome data with corresponding allele frequency
dataset.

(2) Federated comparing update of local privacy budget
achieving desired privacy preserving

Because each genome donor ¢ only uses random noise to
perturb genome data to achieve differential privacy preserving,
each genome donor ¢ publishes privacy budget will not violate
privacy. In addition, the privacy budget is smaller, the privacy
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(1) Encoding ofI

|

I | (3)Random

I | Perturbation of Genome
Data Guaranteeing
Desired Data Utility

Cloud Server Aggregating
Multiparty Genome Data
(Storage, Analysis,
Sharing, and Healthcare)

!
|
|
|
: Genome Data |
|
T
|

Fig. 2. Federated aggregation model of multiparty genome data.

preserving level is better. Therefore, cloud server uses the
federated comparing to update the local privacy budget, so that
all genome donors can achieve the desired privacy preserving.
The specific process of doing federated comparing update of
local privacy budget achieving desired privacy preserving is
as follows.

o Each genome donor i selects the initial privacy budget
€; according to her own normalized expected estimation
error. Each genome donor ¢ sends local privacy budget ¢;
to cloud server.

¢ Cloud server makes a federated comparing to local pri-
vacy budget of all genome donors and obtains the global
privacy budget £ = min{e;}? ;. Cloud server sends the
global privacy budget € to all genome donors.

o Considering the desired privacy budget for each genome
donor i, genome donor i updates her own local privacy
budget ¢; = ¢.

The global privacy budget ¢ is equal to the minimum value
of the initial privacy budget of all genome donors. That is to
say, € = min{e; }_ ;. In this way, each genome donor 7 gets
the desired privacy budget €; = €. On this basis, each genome
donor ¢ can achieve the desired privacy preserving.

Example 2. There are three genome donors representing
1, 2, and 3 respectively. The initial privacy budget of the
three genome donors are €17 = 0.3, e = 1, and €3 = 0.5
respectively. Cloud server can get the global privacy budget
e = min{ey, 9,63} = 0.3 by federated comparing. Thus,
each genome donor obtains the desired privacy budget ¢; =
e=0.3(i=1,2,3).

(3) Random perturbation of genome data guaranteeing de-
sired data utility

If the differential privacy mechanism is directly used for
diploid genotype data, the diploid genotype data are com-
pletely unavailable. Therefore, each genome donor uses the
differential privacy mechanism to randomly perturb diploid
genotypes to categorical data {0,1,2} under desired data
utility. The specific process of random perturbation of genome
data for guaranteeing desired data utility is as follows.

« Each genome donor ¢ uses differential privacy mechanism
M generating random noise X under desired privacy
budget €.

|

|

|

| |

| |

| |

|| Genome Donor n }

! [ T
[

[ R A R

Local Privacy Budget Achieving :
Desired Privacy Preserving |
|

o Each genome donor i uniformly selects the random noise
X;; € X, gets noise vector X; = (Xi1,---, Xim),
and takes the rounding noise vector round(X;) =
(round(X;1), -, round(X;,)) while guaranteeing the
desired data utility U = |/"O“"d()|('i),m°d350| via modular
operation. Note that when each gerfome donor uniformly
selects random noise, it is necessary to ensure that the
ratio of the rounding noise divisible 3 is the desired data
utility.

o Each genome donor ¢ uses the rounding noise vector
round(X;) to randomly perturb the diploid genotype data
x;, and then gets z; = x; +round(X;)mod3 by carrying
out mogiular operation to achieve the desired data utility

x.Nx;
U= fa] |

All genome donors perform the same process as above,

|z Nz|

and finally get desired data utility U = B

of diploid genotype data.

of aggregating
multiparty genome data. In this study, = (z,---,z,)"
represents the m-dimensional diploid genotype matrix of n
genome donors after random perturbation using differential

privacy mechanism under desired data utility.

B. Federated Aggregation Protocol of Multiparty Genome
Data

We give the MGD-FAP under federated aggregation model
of multiparty genome data, and its interactive implementation
process is as follows.

Step 1: Cloud server sends the desired data utility U of
aggregating multiparty genome data to all genome donors.

Step 2: Each genome donor ¢ encodes her own genome data
into a diploid genotype vector x;. Each genome donor ¢ selects
local privacy budget €; according to her own normalized
expected estimation error and sends local privacy budget ¢;
to cloud server.

Step 3: Cloud server makes a federated comparing to the
local privacy budget of all genome donors, and sends the
global privacy budget ¢ = min{e;}? ; to each genome donor
1.

Step 4: Each genome donor ¢ updates her own local privacy
budget and getting the desired privacy budget ¢; = <. Each
genome donor ¢ generates random noise X using differential
privacy mechanism M under desired privacy budget ¢; = €.
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Each genome donor i selects random noise X;; € X by
uniform selection, and gets random noise vector X; and
rounding noise vector round(X;). Each genome donor i
must ensure that the rounding noise vector satisfies equation
U = W Each genome donor i randomly
perturbs d1p101d genotype vector x; using rounding noise
vector round(X;), and gets random diploid genotype vector
x; = x; + round(X;)mod3. Each genome donor i sends the
random diploid genotype vector x; to cloud server.

Step 5: Cloud server aggregates random diploid genotype
vector x; of each gnome donor ¢, and gets random diploid
genotype matrix z of all genome donors.

Thus, each genome donor ¢ can achieve desired privacy
preserving using desired privacy budget ¢ = min{e;} ; in
MGD-FAP. Since the ratio of uniformly selected rounding
noise vector divisible 3 is the desired data utility U for each
genome donor, the MGD-FAP can achieve desired data utility

U= ‘xlgml of aggregating multiparty genome data. In this

study, we use Laplace mechanism achieving desired privacy
preserving of aggregating multiparty genome data. We do
not consider the discrete Laplace mechanism and Gaussian
mechanism. Because the discrete Laplace mechanism only
produces integer random noise, it takes a long time to produce
the amount of random noise that meets the desired data
utility. Because the Gaussian mechanism also depends on the
probability value 4, it is required to select an appropriate
parameter 4.

C. Theoretical Analysis of Our Protocol

In this Section, we theoretically analyze our protocol from
three theorems.

Theorem 3. The MGD-FAP achieves the desired privacy
preserving.

Proof. The Laplace mechanism generates random noise X
under the desired privacy budget ¢ = min{e;}? ;. Considering
desired data utility U = %, each genome
donor ¢ uniformly selects random noise X;; € X and gets
random noise vector X;. Each genome donor ¢ gets the
rounding noise vector round(X;) by rounding operation of
X;. Each genome donor i uses round(X;) to randomly perturb
her diploid genotype vector x; and gets z; + round(X;).
Each genome donor ¢ performs modular operation on x; +
round(X;), and gets random diploid genotype vector z; =
2; +round(X;)mod3. Thus, each gnome donor ¢ can achieve
e-differentia privacy of her genome data according to Theorem
1. By Theorem 2, the random perturbation z+round(X )mod3
of x is e-differential privacy in the MGD-FAP. Thus, the
MGD-FAP can achieve the desired privacy preserving. [

Theorem 4. The MGD-FAP achieves the desired data utility.

Proof. Each genome donor ¢ uniformly selects random
noise X;; € X and gets random noise vector X; under
desired data utility U, and each genome donor i requlres
U = |mu"d()|(x)r|“°d?’ Ol Thus, random perturbation x; =
x; + round(X;)mod3 of diploid genotype vector x; achieves

|m Nz;|

the desired data utility U = BN

. The random perturbation
T =+ round(X)mod3 of aggregating multiparty genome

|x/ﬁm|

data x also achieves the desired data utility U = Tl

according to the Eq. (3). U

Theorem 5. The MGD-FAP reaches the privacy-utility
equilibrium.

Proof. We consider the strategic game between each
genome donor ¢ and cloud server. Each genome donor i
updates their local privacy budgets ¢; by federated comparing,
and obtains the desired privacy budget ¢; = & under the
condition of ¢ = min{e;}? ;. The cloud server can get the
desired data utility U by Theorem 4. Thus, MGD-FAP can
reach the equilibrium between desired privacy preserving and
desired data utility according to the Definition 4. [

According to the above theorems, MGD-FAP can achieve
privacy-utility equilibrium using Laplace mechanism. In the
following example, we show that MGD-FAP can solve the
problems of Example 1.

Example 3. Considering genome donors are kinship,
genome donors can get desired privacy budget guaranteeing
the same level of privacy protection by federated comparing
update of local privacy budget. Since each genome donor
randomly perturb her genome data under desired data utility,
cloud server can get the desired data utility of aggregating
multiparty genome data. Thus, our MGD-FAP can solve the
problems of utility disaster and privacy leakage of Example 1.

Moreover, since differential privacy guarantees better in-
distinguishability between adjacent databases with smaller
privacy budget, our MGD-FAP can achieve any desired data
utility to obtain any meaningful results of scientific research
under desired privacy budget.

V1. EXPERIMENTAL EVALUATION

In the experimental evaluation, we use the publicly available
genome data and allele frequencies of chromosome 22 in the
1000 Genome Project (Phase 3)?. We encode the genome data
to diploid genotype according to the allele frequencies of the
Haplotypemap (HapMap) of the human genome. It contains
the genome data of chromosome 22 of 165 CEU populations.
In all experiments, we aggregate 100, 300, and 500 gene loci of
165 individuals from the diploid genotype dataset respectively,
and we get the average experimental results of repeating the
experiment 10 times. Because we consider the adjacent diploid
genotype datasets with Hamming distance being 1, the /;-
sensitivity is Ay f = 2.

A. Desired Data Utility

We use accuracy as both data utility and desired data
utility metrics. Genome donors directly use Laplace mecha-
nism, which makes the aggregating multiparty genome data
completely unavailable. Therefore, we use the rounding value
of the random noise of Laplace mechanism to randomly
perturb the diploid genotype, and then do modular operation to
obtain the random diploid genotype data in this experimental
analysis. As shown in Fig. 3, the data utility of MGDA
using Laplace mechanism increases with the increasing of the
desired privacy budget, because the ratio of rounding noise

2ftp://ftp.ncbi.nlm.nih.gov/hapmap/
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divisible 3 increases with the increasing of desired privacy
budget. Because the ratio of different amount of rounding
noise divisible 3 is identical under the same desired privacy
budget, the data utility of MGDA using Laplace mechanism
is the same for aggregating diploid genotype data of different
dimensions under the same desired privacy budget. The data
utility of MGDA using randomized response almost maintains
the data utility U = 0.5, because the randomized response uses
either true or false as the answer for equally likely. Thus, the
data utility of MGDA using randomized response is the same
for aggregating diploid genotype data of different dimensions
under the different desired privacy budget.
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Fig. 3. Data utility of MGDA using LM or RR.
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Fig. 4. Desired data utility of MGD-FAP using LM.

According to the desired data utility of cloud server, the
MGD-FAP using Laplace mechanism can achieve desired
data utility for aggregating diploid genotype data of different
dimensions under different desired privacy budget in Fig.
4. Because the ratio of different amount of rounding noise
divisible 3 is the desired data utility under any desired privacy
budget, the desired data utility of aggregating genome data
using Laplace mechanism for diploid genotype of different
dimensions are identical in Fig. 4. Thus, these experimental
results verify Theorem 4.

B. Desired Privacy Preserving

In Fig. 5, the normalized expected estimation error of
MGDA using Laplace mechanism or randomized response
decreases with the increasing of desired privacy budget, be-
cause the ratio of rounding noise divisible 3 increases with
increasing of the desired privacy budget. Because the ratio
of different amount of rounding noise divisible 3 is identical
under the same desired privacy budget, the MGDA using
Laplace mechanism has the same normalized expected esti-
mation error for aggregating diploid genotype data of different
dimensions under the same desired privacy budget. Since the
randomized response uses either true or false as the answer
for equally likely, the MGDA using randomized response has
the same normalized expected estimation error for aggregating
diploid genotype data of different dimensions under the same
desired privacy budget. By Fig. 3, we can conclude that
MGDA using Laplace mechanism can achieve privacy-utility
tradeoff. Although the MGDA using randomized response has
a small normalized expected estimation error under the same
desired privacy budget, the MGDA using randomized response
maintains the data utility being 0.5 in Fig. 3.
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Fig. 5. Normalized expected estimation error of MGDA using LM or RR.
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Fig. 6. Normalized expected estimation error of MGD-FAP using LM.
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TABLE I
COMPARISON OF MGDA USING LM OR RR, AND MGD-FAP USING LM.

Differential privacy mechanisms

Desired privacy budget

Desired data utility  Privacy-utility equilibrium

LM
MGDA RR Yes No No
MGD-FAP LM Yes Yes Yes

As shown in Fig. 6, the normalized expected estimation
error of MGD-FAP using Laplace mechanism decreases with
the increasing of desired privacy budget, because the effect of
privacy protection decreases with the increasing of the desired
privacy budget. Moreover, when the desired privacy budget is
identical, the normalized expected estimation error increases
as the decrease of the desired data utility. The reason for
this result is the ratio of retaining the correct genotype by
random perturbation decreases with the decreasing of desired
data utility. The MGD-FAP using Laplace mechanism has the
same normalized expected estimation error for aggregating
diploid genotype data of different dimensions under the same
desired privacy budget, because the ratio of retaining the
correct genotype is the same. In Fig. 6, we observed that
the normalized expected estimation error of MGD-FAP using
Laplace mechanism are the same for aggregating diploid
genotype data of different dimensions under the same desired
data utility, because the ratio of different amount of rounding
noise divisible 3 is identical under the same desired privacy
budget. This facilitates each genome donor to select the initial
privacy budget based on the normalized expected estimation
error in MGD-FAP. Therefore, we can use Laplace mechanism
achieving the desired privacy preserving of MGD-FAP under
the desired data utility.

In Table I, we make a comparative analysis of MGDA using
Laplace mechanism or randomized response, and MGD-FAP
using Laplace mechanism. Each genome donor obtains the
desired privacy budget using the federated comparing update
of local privacy budget in MGD-FAP. Considering the Laplace
mechanism with desired privacy budget, each genome donor
randomly perturbs her own diploid genotype data according
to the desired data utility of the cloud server in MGD-FAP.
Therefore, our experimental and theoretical results show that
MGD-FAP can ensure an equilibrium between desired privacy
preserving and desired data utility.

VII. CONCLUSION

This paper proposed a federated aggregation model of
multiparty genome data and presented the MGD-FAP ensur-
ing privacy-utility equilibrium. We used the desired privacy
budget as the desired privacy protection measurement, and
used accuracy as the desired data utility measurement. In
MGD-FAP, each genome donor can get the desired privacy
budget by federated comparing update of local privacy budget
under desired data utility of cloud server. Our theoretical
and experimental results show that MGD-FAP using Laplace
mechanism can ensure privacy-utility equilibrium. This work
is conducive to the federated aggregation of multiparty genome
data by cloud server, and can be used to solve the problem of

privacy-utility contradiction of aggregating multiparty genome
data with differential privacy.
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