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With the continuous increase of end users and types of services, the scale of the network has shown explosive growth, which
has brought tremendous pressure and challenges to network data transmission. How to achieve high-quality data transmission has
become a core issue. Single-path transmission has been difficult to meet the above requirements. The concurrent multipath transfer
extension for stream control transmission protocol (CMT-SCTP), which supports multipath and independent data streams, can solve
this problem. However, the current transmission path assessment scheme has too large granularity to make full use of the resources
of the transition zone. Most studies ignore the different requirements of different services, a single transmission strategy, and the
lack of an intelligent dynamic adjustment mechanism. Therefore, we designed a QCMT(Q-learning based CMT-SCTP) scheduling
method. This method considers the multi-dimensional characteristics of the path and the characteristic preferences of different
services, periodically evaluates and trains the reinforcement learning model for service adaptation, and makes scheduling decisions
dynamically. Experimental results show that dynamic scheduling based on path parameters and service preferences can reduce
message delay and improve network throughput.

Index Terms—Quality evaluation, QoS, SCTP, Concurrent Multipath Transfer, Q-learning.

I. INTRODUCTION

W ITH the rapid development of the Internet and the
large-scale popularization of smartphones, network

services are becoming more and more diverse. The increasing
user demands and diversified network services have put for-
ward higher and higher requirements for the network, such as
higher bandwidth and robustness. The application of emerging
technologies such as virtual reality(VR), three-dimensional
(3D) multimedia and the Internet of Everything (LoE) has
generated a large amount of network traffic [1]. The global
mobile traffic will reach 4394EB per month in 2030 [2]. The
above statistic shows the importance of improving network
transmission capacity. However, the currently widely used
single-path transmission technology cannot meet the above
requirements. The concurrent multipath transfer (CMT) [3]
mainly studies how to use multiple paths for data transmission
between multi-link terminals, and realizes load balancing and
bandwidth aggregation. The stream control transmission pro-
tocol (SCTP) can be regarded as the solution for CMT because
of its multi-homing feature. Therefore, CMT is a promising
solution to the high bandwidth and robustness challenges
brought by emerging network services.

Path quality assessment is the basis of high-quality data
transmission and is of great significance. Most of the existing
networks use a single-path transmission technology, and the
path quality assessment methods are all aimed at single-
path networks and relatively simple. Existing path quality
evaluation methods [4], [5] have fewer parameters and larger
evaluation granularity, and are simply divided into good and
bad. The above methods cannot accurately evaluate the path
quality, so that the transition interval paths cannot be fully
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utilized. Existing researches focus on congestion control and
scheduling strategies under multipath transmission, but ignore
that different services have different requirements. The sender
adopts a fixed transmission scheduling strategy and lacks a
dynamic and intelligent scheduling mechanism, which is an
important cause of congestion. Reinforcement learning (RL)
is an advanced learning-by-exploration approach that can be
used to solve scheduling problems. The Q-learning method is
chosen in our model to generate policies and is lightweight.
Moreover, RL can also handle service adaptation in complex
network environments.

In this paper, based on the concurrent multipath transfer
extension for stream control transmission protocol (CMT-
SCTP) [6], [7], [8], [9], we proposed a QCMT (Q-learning
based CMT-SCTP) scheduling method. This method estab-
lishes the path quality evaluation model of the existing mul-
tipath parallel transmission according to the delay, jitter, PLR
and cwnd(congestion window). Moreover, we consider that
different types of services [10], [11], [12] have different
preferences for transmission paths, and use RL to gener-
ate path preference values for services. The path preference
value is combined with path quality parameters to formulate
transmission strategies, select suitable transmission paths for
different services, use transmission paths in a reasonable and
balanced manner, and improve network service quality. The
main contributions of our work are as follows:

• Through the establishment of a comprehensive and ac-
curate transmission path quality evaluation model for the
dynamic multi-dimensional characteristic parameters of
the transmission path, the reliability value is calculated,
and more packets are allocated to the path with high
reliability to ensure efficient and reliable completion of
the service.

• Based on the path reliability evaluation, combined with
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the service preference value, the transmission path is
selected and integrated scheduling is performed. In this
way, intelligent dynamic scheduling between services and
paths is realized, transmission efficiency and quality are
improved.

• The experimental results on the OMNeT++ platform
show that our method has good adaptability to services,
and can adjust the distribution ratio of packets on different
paths as the heterogeneity between paths increases. The
delay performance of the message is also superior to the
existing SCTP and standard CMT methods.

This paper is organized as follows. In Section II, the
related work are summarized and briefly reviewed. The basic
knowledge of stream control transmission protocol (SCTP) is
presented in section III. The model description and construc-
tion method and algorithm improvement are given in Section
IV. The experimental simulation is carried out, and our method
is compared with the standard CMT method in Section V.
Finally, we summarize this paper and look forward to the
future in Section VI.

II. RELATED WORK

Accurate assessment of path quality is the basis of multi-
path transmission scheduling strategy. Some scholars conduct
research from the perspective of path quality assessment
model. Jayasri et al. [13] proposesd an evaluation model with
fewer evaluation parameters, simply dividing the paths into
available and unavailable. The granularity of division is too
large, which makes it impossible to fully utilize the path of the
transition interval. Ansar et al. [14] proposed an adaptive burst
protocol with two states of path quality, good or bad, with poor
scalability and large granularity of evaluation results. Other
scholars study the path quality prediction model. Isyaku et al.
[15] used random forest method to establish quality prediction
models, which can better evaluate the quality, but the model
has high complexity, long training time and large granularity.
Bote-Lorenzo et al. [16] proposed a vector functional link
neural network (RVFL) model, the prediction effect is good
when the network environment fluctuation is relatively small,
but when the path parameter fluctuation is large, the prediction
result is poor and the complexity of the model is high.

There are also a large number of scholars studying trans-
mission strategies. Verma et al. [17] proposed a new fast
retransmission strategy based on delay, which adjusts the
transmission rate of each path according to the path delay.
Arianpoo et al. [18] introduced RL and proposed a distributed
Q-learning method to improve the fairness of flows in CMT.
Experiments show that it is better than the existing CMT
fairness mechanism. Yu et al. [19] proposed a CMT schedul-
ing strategy combined with deep RL, which improved the
throughput of the network, but did not consider the different
preferences of different types of services. Due to the use
of neural networks, it is not convenient for large-scale de-
ployment. Some other works [20], [21], [22] focused on the
security of transmission path.

Challenges faced by existing methods are drawn from the
above analysis, it can be seen that the QoS parameters are less

TABLE I: Related Work Comparison

Literature Granularity levels QoS Service adaptation
[13],[14] large ! %

[15],[16] small ! %

[17] large % %

[18] small ! %

[19] small ! %

Proposed small ! !

considered in the current transmission path evaluation method.
Moreover, the granularity of the evaluation result is too large,
the paths in the transition interval are often ignored and
cannot be used. Some models have high complexity and poor
scalability, which is not conducive to large-scale deployment.
Most researches focus on congestion control under multi-
path parallel transmission, without considering the different
requirements of different services, the transmission strategy is
fixed, and lacks an intelligent dynamic adjustment mechanism.
The sender’s scheduling strategy is an important cause of
congestion. The dynamically adjusted sending strategy can
reduce the occurrence of disorder and congestion.

This paper proposes a path quality evaluation model based
on delay, jitter, PLR and cwnd, establishes the transmission
path quality evaluation model, takes into account different
types of services, and uses RL to generate service preference
values in CMT. Combined with path quality parameters and
service preference values, transmission strategies are formu-
lated to select appropriate transmission paths for different
services, so as to achieve the goal of using transmission paths
in a balanced manner and service adaptation. The comparison
between related work and the method of this paper is shown
in Table I.

III. PRELIMINARIES

This section provides a brief overview of the CMT-SCTP
and RL to provide some preliminaries for our proposed model.

A. CMT-SCTP

SCTP [23], [24], [25] is a transport layer protocol formu-
lated by the Sigtran group of IETF in October 2000. RFC
4960 defines SCTP in detail. SCTP was originally used to
transmit telephone protocol (SS7) signaling messages over IP.
SCTP protocol effectively combines the main advantages of
the other two mainstream protocols TCP and UDP in the
transport layer, and has additional support for two important
protocols, namely, multi-homing and multi-streaming. It can
be seen that SCTP avoids DoS attack. At the same time,
the characteristics of multi-homing and multi-streaming also
determine that SCTP will adopt a different transmission mode
from traditional TCP and UDP and adopt multiple paths for
transmission.

CMT-SCTP was proposed as an IETF draft in [26] and
is being implemented in the FreeBSD SCTP and INET
framework. The OMNeT++ simulator [27] includes the INET
framework, the simulator is used in this article. In the current
draft standard, the scheduling strategy of CMT-SCTP among
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multiple available paths has not been defined. CMT-SCTP in
the OMNeT++ simulator schedules the available path in a
round-robin fashion.

Multi-path transmission technology has many advantages,
such as making full use of network path resources, improving
data security and reliability, and improving network through-
put. Every coin has two sides, and there are some problems
with multi-path transmission that need to be solved. In multi-
path parallel transmission, each path has its own independent
sender cache, but the receiver cache is shared by all paths. Due
to the difference between different paths, the difference will
cause the blocking of the receiver’s cache, which will affect
the improvement of throughput in end-to-end transmission.
In order to alleviate the blocking of receiving cache, it is
necessary to establish an accurate quality assessment model
for the path, so as to make better use of the benefits of multi-
path transmission to improve the end-to-end transmission
throughput.

B. Reinforcement learning

Recently, some scholars have introduced RL into the net-
work. RL [28], [29], [30], [31] is a method to achieve a certain
goal by letting the computer try constantly, get feedback from
errors, and solidify the feedback returned by the incentive
function into experience. It will consider the learning scenario
as a Markov decision-making process [32], which is simply
a circular process. The agent takes action based on the state,
gets rewards, and interacts with the environment to update the
strategy. It can be expressed as follows:

M =< S,A, Ps,a, R, γ >, (1)

where S represents a collection of states. A represents a
collection of actions. P describes the state transition matrix,
P a
ss′

=P [St+1 = s
′ |St = s,At = a]. R represents the reward

function. γ represents the attenuation factor, γ ∈ [0,1].
The optimization strategy is implemented by approximately

solving the Bellman optimality equation.

v∗(s) = max(Ra
s + γ

∑
s′∈S

P a
ss′

v∗(s
′
)), (2)

Q∗(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′

Q∗(s
′
, a

′
), (3)

where v describes the long-term optimization value of a state,
that is, the value of this state when all possible subsequent
actions are considered and the optimal actions are selected for
execution. Q describes the long-term optimal value brought
by being in a state and executing an action, that is, after
performing a specific action in this state, consider all possible
future states, and always select the optimal action to execute
the long-term value brought by these states.

IV. METHODOLOGIES

In this section, we focus on the model description and con-
struction method and algorithm improvement. We established a
multi-dimensional transmission path quality evaluation model,

and combined with the characteristic preferences of different
services, we proposed a QCMT (Q-learning based CMT-
SCTP) transmission method. The overall process of the model
is shown in the Figure 1.
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Fig. 1: The overall process of the model.

The process of the whole method is shown in Figure 1.
First, the path quality evaluation parameters are calculated by
the path transmission feedback round-trip time (RTT), jitter,
PLR and cwnd parameters to evaluate the transmission quality
L of the path. Then combine RL to perform adaptation training
for different types of services to obtain the service preference
value P of each path, and multiply L by P to obtain Q, and
distribute the traffic according to the Q value.

A. Transmission path quality evaluation model

In the network resource scheduling, the reliability value
of the transmission path [6] is calculated by the dynamic
characteristic parameters of the transmission path, and then
the path with high reliability is allocated more service data to
ensure the efficient and reliable completion of the service.

In the selection of path quality evaluation parameters, round
trip time (RTT) is usually one of the most important parame-
ters in path quality evaluation. Round trip delay describes the
speed at which each transmitted data is successfully received,
including the transmission time of transmitted data, the data
processing time at the receiving end and the return time
of ACK confirmation message at the receiving end; Jitter
represents the stability of the transmission path; Packet loss
ratio (Pl) describes the success rate of data transmission; cwnd
describes whether congestion occurs in the current network
environment state and the transmission quality characteris-
tics of the current path. Therefore, round-trip delay (RTT ),
jitter(J), PLR (Pl) and congestion window (cwnd) are selected
As the parameter variable for calculating the path quality
evaluation parameters, the equation established by using the
above relationship is as follows:

L =
cwnd× Jmax

RTT × J
(e(1−

√
Pl)− 1), (4)

where cwnd ,RTT ,J and Pl respectively represent the current
path cwnd, the mean value of round-trip delay, path trans-
mission jitter and PLR respectively, Jmax is the maximum
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value of jitter in all paths in this evaluation. The reason why
the average value is used to calculate the quality evaluation
parameters of the path is that if the quality evaluation is
performed before each transmission, it will seriously affect
the efficiency. Due to the uncertainty of network environment
change, the smaller the jitter value, the more stable the path
is and the better the quality is. When the PLR is 1, the path
quality evaluation parameter is 0, indicating that the path is
completely unavailable and should be discarded. Selecting an
appropriate cycle for quality evaluation can achieve a rela-
tive balance between network transmission performance and
transmission efficiency. The evaluation cycle will be described
later.

The average round trip delay (RTT ) is obtained as follows:
At time t1, the sender sends probe packet to the receiver,

and the sender records the sending time as st1. at time t2, the
sender receives the confirmation information from the receiver,
and records the current time as st2 to calculate the avarage
round-trip delay:

RTT = st1 − st2. (5)

According to equation 2, calculate the average size in an
evaluation cycle.

RTT =

∑n
i=1 RTTi

n
. (6)

The calculation method of jitter is as follows:

J =

√∑n
i=1(RTTi −RTT )2

n− 1
/RTT . (7)

According to equation 4, the jitter is calculated in one
evaluation cycle.

The method to obtain PLR is as follows:

Pl =
Ps − Pr

Ps
, (8)

where Ps means the number of data packets sent by the
sender and Pr is the number of data packets received by the
receiver. The number of data packets not successfully sent in
an evaluation cycle is used as the PLR of the current path.

The average cwnd is obtained as follows:

cwnd =

∑n
i=1 cwndi

n
. (9)

Cwnd is an important control variable in congestion control.
As a regulating factor for SCTP to avoid network congestion,
it can dynamically reflect the quality of the current path.
Congestion control window controls the transmission volume
of path data. When congestion packet loss occurs to the path,
the value of cwnd is halved. The purpose of this is not only
to alleviate the current network congestion, At the same time,
it can indicate the transmission quality of the current path; At
the same time, when the window is too small and the path has
random packet loss, the quality evaluation value of the path
can be affected by the PLR. Therefore, the cwnd size is an
important parameter in the path quality evaluation parameters.

The calculation method of cwnd size of cwnd is that after
the sender receives the confirmation information from the

receiver or sends congestion packet loss, the sender will update
the current cwnd value, and also calculate the average value
of path cwnd in an evaluation cycle.

Path quality evaluation takes path return time, jitter, PLR
and cwnd as path evaluation parameters under the condition of
certain bandwidth, and then reasonably selects the evaluation
cycle.

For the selection of evaluation cycle, if the interval of
evaluation cycle is too small (for example, less than RTT ),
the path quality cannot be accurately reflected; If the selection
is too large, it can not reflect the dynamic change of path
quality. In order to better select the evaluation cycle, the
evaluation cycle interval is determined by using the method
of confidence interval [33] estimation. The confidence inter-
val means the estimation interval of the overall parameters
constructed by sample statistics. In statistics, the confidence
interval of a probability sample is the interval estimation of a
population parameter of this sample. The confidence interval
shows the extent that the real value of a parameter has a
certain probability of falling around the measurement results.
It gives the degree of confidence of the measured value of the
measured parameter, that is, the required ”certain probability”,
which becomes the confidence level. Confidence limits are the
two ends of the confidence interval. For the estimation of a
specific case, the higher the confidence level, the larger the
corresponding confidence interval.

The sample acquisition method of confidence interval is as
follows:
(a) When the sender sends the first packet, the current record

time is the start time.
(b) In case of packet loss, record the current time as the end

time, immediately retransmit the data packet and enter
the next step.

(c) At this time, the sample of the evaluation cycle is the
difference between the end time and the start time, and
it is recorded as a sample value. Records are cleared and
sample data is retrieved.

After obtaining the sample according to the above method,
the calculation method is as follows:

Obtained multiple evaluation cycle samples {x1,x2,...,xn}.
Calculate the sample mean value of the evaluation period
through equation 10:

Xn =

∑n
i=1 xi

n
, (10)

where xi is the sample value of the successful data transmis-
sion time, n is the number of samples taken in the cycle, and
Xn is the average value of the obtained samples.

In order to save storage space and calculation efficiency,
the average value can be calculated by the iterative method of
equation 11, which can avoid storing all sample values:

Xn+1 =
Xn × n+ xn+1

n+ 1
, (11)

where Xn+1 is the sample mean calculated by iterative method
based on the historical record, and Xn is the sample mean
before the current transmission data. xn+1 is the sample value
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of the current transmission data, n is the number of samples
in the previous time, and the sample standard deviation is
calculated according to equation 12:

Sn =

√∑n
i=1(xi −Xn)2

n− 1
, (12)

where Sn is the standard deviation of the sample, Xn is the
sample mean, xi is the sample value, and n is the number of
samples.

Similarly, in order to improve efficiency and reduce the
amount of calculation, use the iterative method of equation
13 to obtain the standard deviation:

Sn+1 =

√
S2
n × (n− 1)

n
+

(xn+1 −Xn)2

n+ 1
, (13)

where Sn+1 is the sample standard deviation calculated by
iterative method based on historical records, Sn is the sample
standard deviation obtained in the previous time, xn+1 is the
current sample value, Xn is the sample mean value of the
previous time, and n is the number of samples in the previous
time. According to the central limit theorem [34], the quality
evaluation period c is calculated by using the confidence
interval method from the calculated sample mean and sample
standard deviation:

P{X−Z1−α/2×
S√
n
<c<X+Z1−α/2×

S√
n
} = 1−α, (14)

where S is the standard deviation of samples, X is the average
of the samples, n is the number of samples, α is the significant
level,and Z1−α/2 can be obtained by looking up the table of
confidence level. Some confidence level parameters are given
in the following table II:

TABLE II: Confidence level and corresponding α and Z values

confidence level α/2 Z1−α/2

80% 0.1 1.282

90% 0.05 1.645

95% 0.025 1.96

98% 0.01 2.326

99% 0.005 2.576

The path quality evaluation parameters are calculated
through the information round-trip time (RTT), jitter, PLR
and cwnd of path transmission feedback to evaluate the
transmission quality of the path, and the evaluation cycle is
calculated by using the method of confidence interval.

In the transmission path quality evaluation model, first
collect the delay characteristics, jitter, PLR and cwnd of the
transmission path, parameterize the path into the model, and
get a path priority queue according to the quality evaluation
results of each path.

B. Service adaptation mechanism based on RL

After the transmission path quality evaluation, the path
priority queue is obtained, but different services have different

requirements for the transmission path in terms of delay, jitter
and PLR. RL model is used to adapt flexibly to different
services, generate path preference values, and select paths that
are more suitable for the type of service in combination with
path quality. The variables in Equation 1 are defined in this
method as follows:

Service type is defined as state, there are n types of services,
then S = {s1, s2, ..., sn}.

Selecting path is defined as action, there are m paths, then
A = {a1, a2, ..., am}.
P describes the state transition matrix, P a

ss′
=P [St+1 =

s
′ |St = s,At = a].
R represents the reward function, R(s, a) describes the

reward for doing action a in state s, R(s, a) =E[Rt+1|St =
s,At = a]. The delay, PLR, and cwnd of the i-th path are
represented by di, pi, and ci respectively.

R = X ×Rd + Y ×Rp + Z ×Rc (15)

X , Y , Z are state indicator functions,

X =

{
1, state s is a delay-sensitive service, (16a)
0, not, (16b)

Y =

{
1, state s is a plr-sensitive service, (17a)
0, not, (17b)

Z =

{
1, state s is a cwnd-sensitive service, (18a)
0, not, (18b)

The reward function of the service sensitive to delay Rd is
set as follows:

Rd =


∑m

i=1 di
da

, da ≤ min{d1, ..., dm}, (19a)

−1, da>min{d1, ..., dm}, (19b)

The reward function of the service sensitive to PLR Rp is
set as follows:

Rp =


∑m

i=1 pi
pa

, pa ≤ min{p1, ..., pm}, (20a)

−1, pa>min{p1, ..., pm}, (20b)

The reward function of the service sensitive to cwnd Rc is
set as follows:

Rc =


ca∑m
i=1 ci

, ca ≥ max{c1, ..., cm}, (21a)

−1, ca<max{c1, ..., cm}, (21b)

Considering the efficiency and complexity, we choose the
Q-learning [35] algorithm in RL. In the model, the service type
is the state s in RL, the action selects the path according to the
current state (service), and the reward function is set to judge
whether the action (path selection) is the best and return the
corresponding reward according to the service characteristics.
The pseudo code of the model is as follows:

The Q-learning method is convergent, and QCMT is based
on Q-learning, so it can be proved to be convergent mathe-
matically. The detailed convergence proof of Q-learning can
be found in literature [36]. Through the RL model, for each
different service, a path preference value {p1,p2,...,pn} will be
generated for the existing n paths, and then the Q value of
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Algorithm 1 QCMT
1: /** Path quality evaluation **/
2: Periodically obtain the delay, calculate jitter

from delay,PLR and cwnd of each path;
3: Calculate the average of RTT, cwnd;
4: Save the above data for the next iteration calculation;
5: Get the path quality L according to Equation 4;
6: /** Service adaptation mechanism based on RL **/
7: Q-learning model parameters: step size α ∈

(0,1],small ϵ >0
8: Initialize policy Q(s, a), for all states and actions

s ∈ S,a ∈ A(s),arbitraily
except the Q(terminal,. ) = 0

9: Loop for each episode:
10: Initialize S
11: Loop for step of episode:
12: Choose action(chosing path) a based

on state s using policy derived from
Q(e.g.,ϵ-greedy)

13: Take action a, obtain R, s
′

14: Q(s, a)←Q(s, a)+α[R+
γ maxaQ(s

′
, A)-Q(s, a)]

15: s ← s
′

16: until s is terminal;
17: end for
18: end for
19: Get and use the latest Q-table;

service adaptation will be obtained by combining the L value
of each path.

Qi = Pi × Li, (i = 1, 2, ..., n). (22)

Based on the path quality assessment parameter L, multi-
plied by the service preference value P to get the Q value,
each service gets the Q value of each path that is adapted to
the service, and each service distributes packets according to
the Q value of each path.

V. PERFORMANCE EVALUATION

In order to evaluate the service adaptation and message
latency on multiple paths, we carried out a series of simu-
lation experiments to test the model performance. We used
the OMNeT++ simulator [27], [37] deployed with the INET
framework. The simulator also contains a fully verified SCTP
protocol model that supports CMT.

This paper divides services into three categories, sensitive
to delay, PLR, and cwnd, respectively. At the same time, since
the latency of a single message or message flow is an important
performance indicator of traffic, the delay between the sender
and the receiver should be as low as possible. Therefore, we
conducted four sets of comparative experiments to test our
proposed method, which are the adaptation rate of the above
three types of services and the message delay performance of
data transmission.

Figure 2 shows the simulated network connected via a
dual-homing network, which contains a sender and a receiver.

Client Server

PathA

PathB

Delay 0ms

Bandwidth 1Gbps

Delay 0、20、40、60、80、100ms

Bandwidth 1Gbps

Fig. 2: Network scenario.

These two paths pass through two routers, and each router has
a bandwidth bottleneck. This is a simply equipped network
topology, but the sender node regards the complex network
just as a single network path with specific characteristics, it
can be used to evaluate the sender’s scheduling. We send data
in one direction on a network without competing traffic, and
use homogeneous and heterogeneous network paths to evaluate
scheduling on lossless paths. This scenario is designed to
simulate how SCTP is currently used for signaling traffic in a
private network. In a private network, the traffic is controlled
and data loss is minimal. The max capacity of the bottleneck
link is 1Gbps. Although the bandwidth of the transmission
path is very large, the available capacity may be much less
due to the size of the current cwnd. This is also in line with
the fact [38] that in actual network scenarios, the cwnd can
better measure the maximum throughput of the path than the
path bandwidth. Services that are sensitive to the cwnd can be
considered bandwidth sensitive services. In all experiments,
the path inherent delay of path A in Figure 2 is set to 0
milliseconds, while in different experiments, the inherent delay
of path B ranges from 0 milliseconds to 100 milliseconds.
The PLR of Path A and Path B are both 0 by default. In
addition, in order to simulate the real network environment
more realistically, SACK delay and Nagles algorithm were
started in all experiments. At the same time, each path will
have additional delays such as processing, queuing and sack
in the transmission process.

First, we designed three sets of experiments to verify
the service adaptation performance of QCMT through the
proportion of data packets sent on path B of three different
types of services that are sensitive to delay, PLR, and cwnd.

Experiment 1, delay sensitive service adaptation capability
experiment, the parameters are the same as Figure 2, and
the inherent delay range of path B is 0 milliseconds to 100
milliseconds. Figure 3 shows the experimental results.

Figure 3 shows the adaptive performance of different
methods of delay-sensitive services. In the experiment, the
inherent delay of path A is always 0, and the delay of path
B continues to increase. SCTP selects path B to send data
packets by default, and does not have service adaptation at all.
The standard CMT under OMNeT++ adopts the round-robin
scheduling strategy, so the allocation ratio of packets on path
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Fig. 3: Packets distribution ratio diagram of delay sensitive service on path A and B.

A and path B is always 50%. In the QCMT method, for delay-
sensitive services, paths with large delays are allocated fewer
data packets than paths with small delays, and an appropriate
distribution ratio of data packets is obtained through training.
As can be seen from Figure 3, as the delay of path B increases,
the proportion of data packets allocated to path B decreases.

Experiment 2, PLR sensitive service adaptation capability
experiment, the parameters are the same as Figure 2, and the
PLR of path B varies from 0‰ to 10‰.
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Fig. 4: Packets distribution ratio diagram of PLR sensitive service on path A and B.

Figure 4 shows the adaptive performance of different meth-
ods for PLR-sensitive services. In the experiment, the PLR of
path A is always 0, and the PLR of path B gradually increases.
SCTP uses a single path to send data packets, and selects path
B to send data packets by default, regardless of the increasing
PLR of path B. The CMT under OMNeT++ adopts a round-
robin scheduling strategy and does not perceive changes in
path quality. Therefore, the allocation ratio of packets on path
A and path B is always 50%. In the QCMT method, for PLR-
sensitive services, paths with small PLRs are allocated more
data packets than paths with large PLRs, and a reasonable
distribution ratio of data packets is obtained through training,
providing more reliable data transmission. As can be seen from
Figure 4, as the PLR of path B increases, the proportion of data
packets allocated to path B is decreasing, and the proportion
of data packets on path A is gradually increasing.

Experiment 3, bandwidth sensitive service adaptation capa-
bility experiment, the parameters are the same as Figure 2, the
cwnd of path A remains unchanged, while the size of path B
is getting smaller and smaller. The difference in the size of
the cwnd between path B and path A is from 10% to 99%.
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Fig. 5: Packets distribution ratio diagram of bandwidth sensitive service on path A and
B.

It can be seen from Figure 5 that the adaptability per-
formance of different methods to cwnd-sensitive services. In
the experiment, the bandwidth difference between path A and
path B gradually increases. SCTP only uses a single path and
uses path B to send packets by default. The CMT adopts
the round-robin scheduling strategy and does not consider
changes in path parameters. Therefore, the allocation ratio of
packets on path A and path B is always equal to half. In
the QCMT method, for cwnd-sensitive services, the path with
larger bandwidth after training has a larger proportion of data
packets and a reasonable allocation ratio of data packets is
obtained. As can be seen from Figure 5, as the bandwidth ratio
of path B decreases compared to path A, the proportion of data
packets allocated to path B decreases, and the proportion of
data packets on path A gradually increases, there is always a
dynamic and appropriate distribution ratio.

The latency of the message is an important aspect to
evaluate the network transmission performance. Therefore, in
order to compare the message latency performance of different
transmission methods in different degrees of homogeneous
and heterogeneous networks. We performed simulation exper-
iments using the topology diagram in Figure 2. We extend the
experiment to different network configurations for delay. In
this experiment, the delay of path A has been kept at 0ms,
while the delay of path B is variable, and the inherent delay
ranges from 20ms to 100ms. The sender periodically sends
different types of service packets and calculates the delay, and
takes the average value to compare the performance of SCTP,
standard CMT and QCMT. The experimental results are shown
in Figure 6.

The performance of different methods on message latency
can be seen from Figure 6. In the experiment, the delay of path
B is gradually increasing, and the heterogeneity of path A and
path B is gradually increasing. Since SCTP only uses a single
path and selects path B by default, the message latency has
always been large. CMT adopts the round-robin scheduling
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Fig. 6: Avarage message latencis for different pathB delays.

strategy, but does not take into account the change of path
parameters, so the distribution ratio of data packets on path A
and path B is always equal to half, but because two paths are
used at the same time, the message latency is compared with
that of sctp much lower. In the QCMT method, after training,
different types of services get a reasonable packet distribution
ratio according to the path parameters. In the experiments,
different types of services all get a good packet allocation
ratio. Overall, with the increase of path B delay, the message
latency of QCMT method is always better than that of sctp
and standard cmt methods, and with the increase of path A
and path B heterogeneity, the advantage is more obvious.

The experimental results in this section confirm that when
traffic is transmitted to varying degrees on heterogeneous
network paths, the QCMT proposed in this paper can adapt
to services compared to SCTP and standard CMT. During
the training process of QCMT, it will choose a suitable path
according to the preferences of different types of services.
When training completed, poorer quality paths are assigned
less packets. And as the quality difference between different
paths increases, the allocation ratio is also adjusted accord-
ingly. At the same time, the most important message delay
indicator in the transmission algorithm, QCMT through intel-
ligent adjustment, effectively reduces the message delay, has
always been better than sctp and standard CMT, and with the
increasing heterogeneity of the path, the advantages become
more obvious.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a service-oriented adaptive mul-
tipath parallel transmission method, QCMT (Q-learning based
CMT-SCTP). This method considers the multi-dimensional
characteristics of the path and characteristic preferences of
different services, periodically carries out the path quality
assessment and the service-oriented RL model, and makes
the scheduling decision dynamically. The experimental results
show that the algorithm can perform path selection well
according to services preference, and intelligent dynamically
adjust according to the path. At the same time, because QCMT
has good service adaptation performance for services, it also

has a good performance on message delay, which is better than
SCTP and standard CMT. As the path heterogeneity increases,
the effect is more significant. In the future, in addition to
considering path quality and service preference, scheduling
policies can also be generated by combining the priorities of
different services.
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