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Abstract
Pythagorean fuzzy set (PFS) has proven to be a competent soft computing tool because of its
capacity to tackle fuzziness in decision-making. Pythagorean fuzzy distance measures are
reliable techniques deployed to appreciate the application of PFSs. Some distance measures
between PFSs have been explored, where the complete parameters of PFSs are considered.
These distance measures lack reliability due to the negligent of the weights of elements
under Pythagorean fuzzy situation. In this paper, a novel distance measure between PFSs
is proposed and its weighted version to enhance reliability in terms of applications. To
show the suitability of the measures, we characterize the distance measure and its weighted
version with some results. In addition, certain decision-making problems involving cases
of pattern recognition and disease diagnosis are discussed based on the measures. From a
comparative analysis of some existing distance measures with the novel distance measures,
it is observed that the proposed distance measures are superior in term of accuracy and
reliability.

Keywords
Decision-making, Distance measure, Pythagorean fuzzy set, Pattern recognition, Disease
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1. Introduction

Decision-making is a herculean task enmeshed with fuzziness. The introduction of fuzzy set
(FS) [1] enhanced the solution of many decision-making problems. FS though significant
has a drawback in the sense that it considers only the membership degree µ (MD) of the
case under consideration. Because of this drawback, Atanassov [2] proposed a generalized
fuzzy set known as intuitionistic fuzzy set (IFS). IFS is described by membership degree µ ,
nonmembership degree ν and intuitionistic fuzzy index π with the property that their sum is
one. IFSs have been applied in sundry cases [3–8]. The concept of distance measures under
intuitionistic fuzzy context have been discussed as reliable information measures [9–12].
Some existing distance measures were revised and applied to medical diagnostic process
[13], and sundry applications of distance measures between IFSs have been studied [14, 15].
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Albeit, the situation where the sum of MD and NMD is more than one is beyond the
scope of IFS. For instance, if µ =

√
3

2 and ν = 1
2 , then IFS is handicapped to model such a

problem. The shortcoming in IFSs naturally led to the introduction of intuitionistic fuzzy
set of the second type (IFSST) [16], which is referred to Pythagorean fuzzy sets (PFSs)
[17, 18]. PFS provides a new approach to deal with vagueness considering MD µ and NMD
ν satisfying the conditions; µ +ν ≥ 1 and µ2 +ν2 ≤ 1. PFS has near relationship with IFS.
Because of the flexibility of the notion of PFSs, it has been used to address some real-life
problems [19–23].

Distance measure is a soft computing technique use to find the distance between two
arbitrary PFSs akin to metric function. Distance measures have been utilized in resolving
many real-life problems in Pythagorean fuzzy domain. Zhang and Xu [21] initiated the study
of distance measure in Pythagorean fuzzy context by proposing a distance measure and
applied it to multiple criteria decision making. Li and Zeng [24] introduced a new distance
measure between PFSs with real-life applications. Some distance measures between PFSs
have been introduced and characterized [25]. The method of calculating distance between
PFSs in [21] was modified in [26] for better output. Several other distance measures between
PFSs have been studied and applied to multiple criteria group decision-making [27, 28].

The distance measures between IFSs/PFSs studied in [11, 21, 25, 26] are very appropriate
because they captured the three parameters of IFSs/PFSs to avoid information loss. Albeit,
these distance measures lack reliability due to the negligent of the weights of elements,
which can negatively affect the outputs. Thus, the motivation of this study is to introduce
weighted distance measure between PFSs with better performance index compare to the
existing distance measures [11, 21, 25, 26]. The specific objectives of this work includes;
(i) explore some existing distance measures in Pythagorean fuzzy domain, (ii) propose new
distance measure and its weighted version between PFSs, (iii) apply the proposed distances
in cases involving pattern recognition and disease diagnosis, (iv) present comparison of the
new distances for PFSs with the existing distance measures. The paper is thus outlined;
Section 2 presents some mathematical background of PFSs and discusses some existing
distances in Pythagorean fuzzy setting, Section 3 introduces the new distances between
PFSs and their properties, Section 4 discusses the applications of the proposed distances in
cases involving pattern recognition and disease diagnosis, and Section 5 draws conclusion
with recommendation for further studies.

2. Preliminaries

This section presents some mathematical background of PFSs and discusses some distance
measures for PFSs.

2.1. Pythagorean fuzzy sets

Myriad of works have been done on the mathematical background of IFSs and PFSs. Here,
some basic concepts of PFSs are presented to be used in the subsequent sections. Let us
assume that X is a non-empty set throughout this paper.

Definition 2.1. [29] An intuitionistic fuzzy set A of X is defined by

A= {〈x,µA(x),νA(x)〉 : x ∈ X}, (1)

where µA, νA : X → [0,1] are MD and NMD of x ∈ X , and 0≤ µA(x)+νA(x)≤ 1. For an
IFS A in X , πA(x) ∈ [0,1] = 1−µA(x)−νA(x) is the intuitionistic fuzzy index or hesitation
margin of A.

Definition 2.2. [18] A Pythagorean fuzzy set B of X is defined by

B= {〈x,µB(x),νB(x)〉 : x ∈ X}, (2)
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where µB, νB : X→ [0,1] are MD and NMD of x∈X , and 0≤ µ2
B(x)+ν2

B(x)≤ 1. For a PFS

B in X , πB(x) ∈ [0,1] =
√

1−µ2
B(x)−ν2

B(x) is the Pythagorean fuzzy index or hesitation
margin of B.

Definition 2.3. [18] Suppose B and C are PFSs in X , then for all x ∈ X we have
(i) B= C iff µB(x) = µC(x), νB(x) = νC(x).

(ii) B⊆ C iff µB(x)≤ µC(x), νB(x)≥ νC(x).
(iii) B = {〈x,νB(x),µB(x)〉 : x ∈ X}.
(iv) B∪C= {〈x,max(µB(x),µC(x)),min(νB(x),νC(x))〉 : x ∈ X}.
(v) B∩C= {〈x,min(µB(x),µC(x)),max(νB(x),νC(x))〉 : x ∈ X}.

Definition 2.4. [19] Pythagorean fuzzy pair (PFP) is characterized by the form 〈b,c〉 such
that b+ c≤ 1 where b,c ∈ [0,1]. PFP evaluate the PFS for which the components (b and c)
are interpreted as MD and NMD.

2.2. Distances between Pythagorean fuzzy sets

Distance measure is a soft computing technique use in the applications of PFSs. The
definition of distance measure between PFSs is given thus.

Definition 2.5. [25] If B and C are PFSs of X , then the distance between B and C denoted
by d(B,C) is a function d : PFS×PFS→ [0,1] which satisfies

(i) 0≤ d(B,C)≤ 1
(ii) d(B,C) = 0 iff B= C

(iii) d(B,C) = d(C,B)
(iv) d(B,D)≤ d(B,C)+d(C,D), where D is also a PFS of X .

When d(B,C) reaches 0, it shows that B and C are more close or related. Again, if
d(B,C) reaches 1 then B and C are not related or close. For any two PFSs B and C of
X = {x1, · · · ,xn}, we present the following distances between them.

2.2.1. Burillo and Bustince distances

By extending the distances in [30], Burillo and Bustince [9] proposed the following
distances:

d1(B,C) =
1
2

Σ
n
i=1

(
|µB(xi)−µC(xi)|+ |νB(xi)−νC(xi)|

)
(3)

d2(B,C) =
(1

2
Σ

n
i=1
(
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2))0.5

(4)

d3(B,C) =
1

2n
Σ

n
i=1

(
|µB(xi)−µC(xi)|+ |νB(xi)−νC(xi)|

)
(5)

d4(B,C) =
( 1

2n
Σ

n
i=1
(
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2))0.5

(6)

The obvious limitation of these approaches [9] is that the hesitation margin is not considered
in the computations.
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2.2.2. Szmidt and Kacprzyk distances

The modifications of the approaches in [9] were presented in [11] by incorporating hesitation
margin, namely:

d5(B,C) =
1
2

Σ
n
i=1

(
|µB(xi)−µC(xi)|+ |νB(xi)−νC(xi)|+ |πB(xi)−πC(xi)|

)
(7)

d6(B,C) =
(1

2
Σ

n
i=1
(
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2 +(πB(xi)−πC(xi))

2))0.5

(8)

d7(B,C) =
1

2n
Σ

n
i=1

(
|µB(xi)−µC(xi)|+ |νB(xi)−νC(xi)|+ |πB(xi)−πC(xi)|

)
(9)

d8(B,C) =
( 1

2n
Σ

n
i=1
(
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2 +(πB(xi)−πC(xi))

2))0.5

(10)

2.2.3. Zhang and Xu distance

In [21], a distance measure between PFSs was proposed, i.e.,

d9(B,C) =
1
2

Σ
n
i=1

(
|µ2

B(xi)−µ
2
C(xi)|+ |ν2

B(xi)−ν
2
C(xi)|+ |π2

B(xi)−π
2
C(xi)|

)
. (11)

2.2.4. Modified Zhang and Xu distance

In [26], a distance measure between PFSs was proposed which normalized the distance
measure in [21]. The distance is given by

d10(B,C) =
1
2n

Σ
n
i=1

(
|µ2

B(xi)−µ
2
C(xi)|+ |ν2

B(xi)−ν
2
C(xi)|+ |π2

B(xi)−π
2
C(xi)|

)
. (12)

3. Weighted distance measure between Pythagorean fuzzy sets

Now, we present a new distance measure between PFSs and its weighted version to enhance
reliability. For X = {x1, · · · ,xn}, the new distance measure between two PFSs B and C of X
is

d(B,C) =
( 1

3n
Σ

n
i=1
[
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2 +(πB(xi)−πC(xi))

2])0.5

(13)
Eq. (13) captures the complete parameters of PFSs and also takes cognizance of the number
of parameters as seen in the denominator.

To avoid unreliable output, the weights of the elements xi ∈ X for i = 1, · · · ,n should
be considered. Assume the weights of xi ∈ X is αi for i = 1, · · · ,n where 0 ≤ αi ≤ 1 and
∑

n
i=1 αi = 1. Thus the weighted version of Eq. (13) is as follows:

dα(B,C) =
( 1

3n
Σ

n
i=1αi

[
(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2 +(πB(xi)−πC(xi))

2])0.5

(14)

Theorem 3.1. If B and C are PFSs in X. Then
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(i) dα(B,C) = dα(C,B),
(ii) dα(B,C) = dα(B,C).

Proof. The proofs of (i) and (ii) are straightforward.

Theorem 3.2. Let B and C be PFSs in X. Then dα(B,C) satisfies the conditions of distance
measure between B and C.

Proof. The proof of (i) of Definition 2.5 is straightforward. Now, we prove (ii) of Definition
2.5. Suppose dα(B,C) = 0. Then

(µB(xi)−µC(xi))
2 = 0, (νB(xi)−νC(xi))

2 = 0, and (πB(xi)−πC(xi))
2 = 0.

Thus
µB(xi) = µC(xi), νB(xi) = νC(xi) and πB(xi) = πC(xi),

and hence B = C. The converse is straightforward. Thus (ii) of Definition 2.5 follows.
Again, since

dα(B,C) =
(

∑
n
i=1 αi[(µB(xi)−µC(xi))

2 +(νB(xi)−νC(xi))
2 +(πB(xi)−πC(xi))

2]

3n

)0.5

=
(

∑
n
i=1 αi[(µC(xi)−µB(xi))

2 +(νC(xi)−νB(xi))
2 +(πC(xi)−πB(xi))

2]

3n

)0.5
,

it implies that dα(B,C) = dα(C,B), and hence (iii) of Definition 2.5 as desired.
Suppose D is also a PFS of X , then the distances dα(B,C), dα(B,D) and dα(C,D)

satisfy the triangle inequality if dα(B,D)≤ dα(B,C)+dα(C,D). To see this, if

dα (B,D) = max
( 1

3n

n

∑
i=1

[
(µB(xk)−µD(xk))

2 +(νB(xk)−νD(xk))
2 +(πB(xk)−πD(xk))

2])0.5

=
( 1

3n

n

∑
i=1

[
(µB(xk)−µD(xk))

2 +(νB(xk)−νD(xk))
2 +(πB(xk)−πD(xk))

2])0.5

for some fixed k, 1≤ k ≤ n i.e., the maximum is attained at k. Then

(µB(xk)−µD(xk))
2 ≤ (µB(xk)−µC(xk))

2 +(µC(xk)−µD(xk))
2,

(νB(xk)−νD(xk))
2 ≤ (νB(xk)−νC(xk))

2 +(νC(xk)−νD(xk))
2,

(πB(xk)−πD(xk))
2 ≤ (πB(xk)−πC(xk))

2 +(πC(xk)−πD(xk))
2.

Thus dα(B,D)≤ dα(B,C)+dα(C,D) as desired. Hence the properties of distance measure
are satisfied.

Theorem 3.3. Suppose B, C and D are PFSs in X with the properties B⊆ C⊆ D. Then
(i) dα(B,D)≥ dα(B,C),

(ii) dα(B,D)≥ dα(C,D),
(iii) dα(B,D)≥max[dα(B,C),dα(C,D)].

Proof. Because B⊆ C⊆ D, we have

(µB(xi)−µD(xi))
2 ≥ (µB(xi)−µC(xi))

2,

(νB(xi)−νD(xi))
2 ≥ (νB(xi)−νC(xi))

2,

(πB(xi)−πD(xi))
2 ≥ (πB(xi)−πC(xi))

2.

Thus

(µB(xi)−µD(xi))
2 + (νB(xi)−νD(xi))

2 +(πB(xi)−πD(xi))
2

≥ (µB(xi)−µC(xi))
2 +(νB(xi)−νC(xi))

2

+ (πB(xi)−πC(xi))
2.

So, dα(B,D)≥ dα(B,C), and so (i) holds. With the same argument, dα(B,D)≥ dα(C,D),
which proves (ii). From (i) and (ii), dα(B,D)≥max[dα(B,C),dα(C,D)], i.e., (iii) follows.
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4. Applicative Illustrations

This section addresses applications of the new distance measures and the existing distance
measures under PFSs in decision-making problems of pattern recognition and disease
diagnosis. Suppose there are m choices represented in PFPs C j for j = 1, . . . ,m considered
in a feature space S. If there is a sample choice denoted as PFP D to be associated with C j,
then the value of

d(C j,D) = min
[
d(C1,D), · · · ,d(Cm,D)

]
(15)

or
dα(C j,D) = min

[
dα(C1,D), · · · ,dα(Cm,D)

]
(16)

where d(C j,D) (or dα(C j,D)) indicates the classification of C j and D.

4.1. Case of pattern recognition

The process of identifying patterns via machine learning procedure is incorporated with
uncertainties. Thus the approach of pattern recognition based on Pythagorean fuzzy
information is an interesting technique for reliable pattern classification. Suppose there are
three patterns P1, P2 and P3, represented as PFPs in S = {s1,s2,s3} with weights
α = {0.3,0.4,0.3}. If there is an unidentified pattern Q represented in PFP in the same
feature space S. The representations of the patterns are in Table 1.

Table 1. Pattern representations

PFPs
Feature space

s1 s2 s3

µP1
νP1
πP1

0.1000
0.1000
0.9899

0.5000
0.1000
0.8602

0.1000
0.9000
0.4243

µP2
νP2
πP2

0.5000
0.5000
0.7071

0.7000
0.3000
0.6481

0.0000
0.8000
0.6000

µP3
νP3
πP3

0.7000
0.2000
0.6856

0.1000
0.8000
0.5916

0.4000
0.4000
0.8246

µQ
νQ
πQ

0.4000
0.4000
0.8246

0.6000
0.2000
0.7746

0.0000
0.8000
0.6000

Then our task is to classify Q into any of Pj, j = 1,2,3, by deploying the existing
distance measures and the new distance measures.

Using Szmidt and Kacprzyk distance [11]: we get

d5(P1,Q) = 0.7133, d5(P2,Q) = 0.3220, d5(P3,Q) = 1.4733 using Eq. (7)

d6(P1,Q) = 0.3778, d6(P2,Q) = 0.1868, d6(P3,Q) = 0.7626 using Eq. (8)

d7(P1,Q) = 0.2378, d7(P2,Q) = 0.1073, d7(P3,Q) = 0.4911 using Eq. (9)

d8(P1,Q) = 0.2181, d8(P2,Q) = 0.1079, d8(P3,Q) = 0.4403 using Eq. (10).

By using Zhang and Xu distance [21], we get d9(P1,Q) = 0.6199, d9(P2,Q) = 0.3600,
d9(P3,Q) = 1.4099. By using modified Zhang and Xu distance [26], we get d10(P1,Q) =
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0.2066, d10(P2,Q) = 0.1200, d10(P3,Q) = 0.4700. By using the new distance measure, we
get d(P1,Q) = 0.1781, d(P2,Q) = 0.0881, d(P3,Q) = 0.3595. Using the weighted distance
measure, we get dα(P1,Q) = 0.0991, dα(P2,Q) = 0.0522, dα(P3,Q) = 0.2143.

From the computations, Eqs. (7) and (8) of Szmidt and Kacprzyk distance are weak
distance measures, whereas the new distance measure and its weighted version are the most
reliable distance measures.

The results of the distances between the known patterns and the unidentified pattern are
presented in Table 2.

Table 2. Results of distance measures

Methods
Pattern classifications

(P1,Q) (P2,Q) (P3,Q)

Szmidt and
Kacprzyk [11]

0.7133
0.3778
0.2378
0.2181

0.3220
0.1868
0.1073
0.1079

1.4733
0.7626
0.4911
0.4403

Zhang and Xu
[21] 0.6199 0.3600 1.4099

Ejegwa [26] 0.2066 0.1200 0.4700
New method 0.1781 0.0881 0.3595

New weighted
method 0.0991 0.0522 0.2143

From Table 2, the unidentified pattern Q belongs to pattern P1 since
d(P3,Q)> d(P1,Q)> d(P2,Q) for all the distance methods.

4.2. Case of disease diagnosis

Deploying Pythagorean fuzzy decision-making approach to disease diagnosis is necessary
because of the uncertainties involve in the process. Since disease diagnosis is a critical
assignment, care should be taken to avoid wrong diagnosis. Thus, we present a disease
diagnosis based on distance measures using Pythagorean fuzzy medical information.

Suppose we have a set of diseases

D = {viral fever, malaria, typhoid fever, stomach pain, chest pain}

represented in PFPs, and a set of symptoms S = {s1,s2,s3,s4,s5} where s1 = temperature,
s2 = headache, s3 = stomach pain, s4 = cough, s5 = chest pain, which are the clinical
expressions of D. Taking the weights of the symptoms of D to be
α = {0.1,0.15,0.3,0.2,0.25}.

Assume a patient P expresses some symptoms in S and his/her Pythagorean fuzzy
medical information is known. Table 3 contains Pythagorean fuzzy information of D j,
j = 1, . . . ,5 and P with respect to S.

DOI: 10.33969/JIEC.2021.31007 93 Journal of the Institute of Electronics and Computer



Paul Augustine Ejegwa et al.

Table 3. Pythagorean fuzzy medical information

PFPs
Clinical expressions

s1 s2 s3 s4 s5

µV
νV
πV

0.4000
0.0000
0.9165

0.3000
0.5000
0.8124

0.1000
0.7000
0.7071

0.4000
0.3000
0.8660

0.1000
0.7000
0.7071

µM
νM
πM

0.7000
0.0000
0.7141

0.2000
0.6000
0.7746

0.0000
0.9000
0.4342

0.7000
0.0000
0.7141

0.1000
0.8000
0.5916

µT
νT
πT

0.3000
0.3000
0.9055

0.6000
0.1000
0.7937

0.2000
0.7000
0.6856

0.2000
0.6000
0.7746

0.1000
0.9000
0.4243

µS
νS
πS

0.1000
0.7000
0.7071

0.2000
0.4000
0.8944

0.8000
0.0000
0.6000

0.2000
0.7000
0.6856

0.2000
0.7000
0.6856

µC
νC
πC

0.1000
0.8000
0.5916

0.0000
0.8000
0.6000

0.2000
0.8000
0.5657

0.2000
0.8000
0.5657

0.8000
0.1000
0.5916

µP
νP
πP

0.6000
0.1000
0.7937

0.5000
0.4000
0.7681

0.3000
0.4000
0.8660

0.7000
0.2000
0.6856

0.3000
0.4000
0.8660

Note: V is for viral fever, M is for malaria, T is for typhoid fever, S is for stomach pain
and C is for chest pain, respectively. Now, we diagnose the disease of P by finding which of
the diseases has the shortest distance to P by deploying the existing distance measures and
the new distance measures. After computations, the results are presented in Table 4.

Table 4. Results of distance measures

Methods
Pattern classifications

(V,P) (M,P) (T,P) (S,P) (C,P)

Szmidt and
Kacprzyk [11]

1.3327
0.5292
0.2665
0.2367

1.5596
0.7062
0.3119
0.3158

1.8743
0.7996
0.3749
0.3576

2.1797
0.9583
0.4359
0.4286

2.7824
1.0020
0.5565
0.4481

Zhang and Xu
[21] 1.3599 1.5099 1.8499 2.0199 2.7399

Ejegwa [26] 0.2720 0.3020 0.3700 0.4040 0.5480
New method 0.1932 0.2579 0.2920 0.3499 0.3659

New weighted
method 0.0917 0.0919 0.1183 0.1538 0.1733

From Table 4, one can suggests that the patient P is suffering from viral fever. The results
show amazing relationship between viral fever, malaria and typhoid fever. Thus, the patient
should also be treated for malaria and typhoid fever because the patient is significantly
closed to the diseases.
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4.3. Comparative analysis

The results in Tables 2 and 4 shows that the Eqs. (7) and (8) in [11] and the method
in [21] are not reliable distance measures between PFSs since they violate condition (i)
of Definition 2.5. The proposed methods show high reliability indexes compare to the
methods in [11, 21, 26]. Most especially, the weighted distance measure is the most reliable
measure because of its high accuracy due to the considerations of weights. This agrees to
the significant of weights of elements in the computation of distances between PFSs.

5. Conclusion

This paper has shown the capacity of PFSs in tackling uncertainties in decision-making
problems based on distance measure approaches. We proposed a new distance measure
between PFSs and its weighted version to enhance reliability in application situations.
Applications of the studied distance measures are demonstrated in cases of pattern
recognition and disease diagnosis. By comparing the novel distances with the existing
distance measures in terms of the applications, the proposed approaches yield reliable
results with better performance indexes. These new distances could be studied in
interval-valued Pythagorean fuzzy sets, picture fuzzy sets, q-rung orthopair fuzzy sets, etc.
for future endeavour.
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