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In recent years, cloud computing technology has been developing rapidly. As a result, the internal traffic of large-scale enterprises’
data centers has increased significantly. It has become important to improve the disaster tolerance capability of data centers to
ensure user data security. However, the data center network relies on its physical infrastructure. Large-scale disasters may damage
the infrastructure and cause huge data loss or connection interruption. Software-defined network (SDN) is an innovative network
architecture that separates the control and forwarding layers of the network. Thus, SDN promotes network programmability and
opens up new ways to design disaster-resistant networks. Based on SDN technology, we propose a disaster-aware dynamic routing
(DADR) scheme. When a disaster signal is received, the SDN controller notifies the Global Server Load Balance (GSLB) device and
stops declaring the IP of the disaster-stricken data center. At the same time, the SDN controller sends the server and client session
information and the current traffic information of the disaster-stricken data center to other sites, where the optimal routing path
is calculated for the data center based on the traffic characteristics by the proposed Lagrangian Relaxation based Bellman-Ford
Parallel algorithm (LRBFP). Our results show that in the event of a disaster, based on the proposed DADR scheme and LRBFP

algorithm, the packet loss rate and network delay can be greatly reduced.

Index Terms—Disaster-aware, dynamic routing, data center networks, software-defined network, parallel algorithm.

I. INTRODUCTION

Data center is an infrastructure in a large IT enterprise.

It consists of thousands of servers connected together
through a data center network which can provide power-
ful computing and storage capabilities to support various
businesses of the enterprise. With the rapid development of
cloud computing, the number of online business users are
sharply increased. This requires data centers to provide reliable
network services for users. In general, data center provides
adopt a multi-site data center network architecture to improve
the availability (One type of multi-site data center network
topology comprises at least a pair of data centers and both
of which are active. Traffic can go to the nearest active
data center to obtain the services). However, disasters (e.g.
earthquake) always lead to failures of data centers [1], [2],
and then services provided by disaster-stricken data centers
will be affected under disaster situations. Under such situation,
traffic for disaster-affected services will be rerouted to other
interconnected multi-site data centers that can provide the
required services. The data centers received the disaster-
affected traffic may be congested due to the limited network
bandwidth resources. As a result, packet loss and delay will
increase which seriously affects network performance and user
experience. Thus, the study of traffic scheduling in data center
network under disaster scenario is critical for data center
operators to guarantee the network performance [3], [4], [S].
The traffic scheduling algorithm is an effective way to solve
network congestion, which can be divided into two categories,
i.e., traffic scheduling among multi-site Data Centers and
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traffic scheduling in the Data Center. The former usually
is used to a multi-site data centers layout that based on
Intelligent Domain Name System (DNS) and Global Server
Load Balancing (GSLB) to achieve high availability and
continuity. Authors in [6] describe a system for providing
distributed global server load balancing over resources across
multi-site data centers, and [7] also proposes a new dynamic
load balancing method that uses dynamic DNS update and
round-robin mechanism without modifying the DNS list. Both
of them can achieve fast recovery after a disaster, but they will
cause 1-2 seconds of lag and information loss due to disasters.
These previous works cannot take the early warning time of
disaster into account to carry out the pre-disaster protection,
which can reduce the impact for users under disasters.

The latter considers traffic scheduling in the Data Center,
where Software Defined Network (SDN) [8] is adopted to
achieve load balancing of the data center. The paper [9] pro-
poses the Plug-n-Serve system implementing a load balancing
algorithm called LOBUS (load-balancing over unstructured
networks) by using OpenFlow for unstructured networks. The
paper [10] develops a load balancing algorithm for handling
multiple services (called LBMS) by SDN technology. It uses
an SDN device (i.e., FlowVisor) to achieve network virtual-
ization and coordinate multiple controllers. Each controller
handles requests destined for different services. Since SDN
calculates the path of each traffic in real-time in the above
works, the sudden traffic scheduling under disaster scenario
will bring processing pressure to the controller which leads to
network performance degradation. Thus, these works cannot
well adapt to the disaster scenario.

To address the above limitations, this paper assumes that
multi-site data center network topology comprises a pair of
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data centers with SDN controller, respectively, and traffic can
go to both of which to obtain service. For a disaster scenario,
we develop an interface in the SDN controller which can
receive the disaster signal from the disaster monitoring system
in [11]. According to the disaster signal, the SDN controller
notifies the Global Server Load Balance (GSLB) device to
stop declaring the IP of the disaster-stricken data center, and
then the traffic is blocked to enter into the disaster-stricken
data center. Meanwhile, the SDN controller sends the server
and client session information to another site to ensure user
access without interruption. Furthermore, the SDN controller
also sends the current traffic information of the disaster-
stricken data center to another site at the same time when
received the disaster signal. To fully utilize link resources to
deal with the traffic, we propose a GPU-based Lagrangian
Relaxation based Bellman-Ford Parallel algorithm (LRBFP)
for the SDN controller to calculates the current optimal routing
path based on traffic information characteristic. Our work can
significantly reduce the packet loss rate and delay as well as
shorten the disaster recovery time. Such that user perception
is minimized and data security is improved when disaster
scenarios.

The rest of the paper is organized as follows: The proposed
scheme is introduced in Section II. In Section III we discuss
the performance of our scheme. Finally, we conclude this
paper in Section IV.

II. PROPOSAL AND DESIGN

As the size of the data center network continues to expand
and the number of applications increases, the number of
flows transmitted in the data center network will be huge.
Therefore, when the disaster happens, the network control
of the traffic from the disaster data center may not be able
to complete the optimization calculation of the flow routing
within an acceptable time limit. Based on this, we propose a
disaster-aware dynamic routing (DADR) scheme and design a
Lagrangian Relaxation based Bellman-Ford Parallel algorithm
(LRBFP), which includes the following modules, disaster
warning reception, large and small flow monitoring, algorithm
design.

A. Design of Our Scheme

This paper proposes a DADR scheme. This scheme can
make full use of data center network resources to meet the
needs of most users when a disaster happens.

The idea of the scheme is as follows, after the system is
started, the SDN controller detects large and small flows and
records them, marks the small flow preference router based on
the statistical information. When the SDN controller receives
the disaster warning signal, the controller informs the GSLB
device to stop broadcasting the IP of the disaster-stricken data
center, at the same time sends the session information and
statistical flow information to other data centers. The normal
data center calculates the path for the incoming flow according
to the designed LRBFP algorithm.

B. Monitoring Flow Size

Some studies show that the communication traffic inside
the data center is divided into a large flow and a small flow.
The large flow refers to the data flow whose transmitting data
exceeds 10% of the link bandwidth. Through the evaluation
of the data center, it is found that 90% of the flows belong to
the small flow [12], [13]. In practical applications, large flow
requires higher network throughput, and small flow requires
lower latency [14].

Because the routing strategy proposed in this paper needs to
distinguish between large and small flows, there must be a way
to distinguish between large and small flows. Authors in [15]
proposed that the most effective way to detect large flow is at
the terminal host. On the one hand, the proportion of resources
occupied by the switch is less than that of the switch, so as
to avoid excessive use of switch-side resources. On the other
hand, the flow characteristics depend on the speeds at which
the application generates data packets, not the link status of
the network. The terminal is more aware of the rate at which
the application sends packets. The monitoring principle is to
observe the socket cache area of the terminal host. When the
size of the data packet with the same characteristics in the
cache area exceeds 100kb, it will be marked as a large flow,
if 90% of the traffic through the link belongs to small flow,
then we mark this link as the small flow preference link. This
paper uses the statistical monitoring method on the host side
to monitor the large flow. The terminal needs to accurately
count and maintain information such as the rate and bytes of
the data flow, and then sends the statistical information to the
controller through the switch, so as to realize the large and
small flow monitoring function of the controller.

We follow the similar approach as in Mahout [14] to use
the virtual LAN priority code point (PCP) bits (set as 001 for
large flow and 000 for small flow) to indicate the flows.

C. Disaster Warning

With the continuous advancement of scientific technology,
such as laser radar, satellite, remote sensing technology, etc.,
they are used in natural disaster monitoring. By timely mon-
itoring and warning to ensure maximum personal safety and
reduce property loss [11].

In our scheme, we have added an interface to the SDN
controller of each data center to receive the disaster warning
signal and stop advertising the disaster-stricken data center
site IP by notifying the GSLB device, and transfer the ses-
sion information to other data centers. Therefore, subsequent
accesses no longer arrive at the disaster-stricken data center.
It avoids the server timeout due to disasters and realizes the
user unaware.

D. Algorithm Design

When a disaster happens, a large amount of traffic will flow
into other data centers in a short period of time, the network
controller may not be able to complete the optimization of
the routing path within an acceptable time. In order to solve
this problem, the usual approach is to develop a parallel route
optimization method to reduce the computation time of route
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optimization by using the CPU multi-thread parallel com-
puting function. At present, although general-purpose CPU
usually has multiple cores, and each core can support multiple
threads, due to the limitation of the architecture, there are
only dozens to hundreds of threads supported by one CPU,
which cannot make a satisfactory parallel gain for parallel
routing calculation. In recent years, GPU performance and
general computing programming models have been greatly
improved. Compared with the CPU, the GPU can support tens
of thousands of threads at the same time, and the parallel
computing capability is very impressive. Therefore, a GPU-
based parallel routing optimization algorithm is more suitable.

Although the GPU can support massive parallel threads,
its unique architecture determines its weak ability to handle
complex logic. And under the host device programming model,
the data must be copied from the main memory to the
device memory in each iteration, it will consume extra time.
Therefore, an efficient parallel algorithm running on the GPU
environment should have the following two characteristics.
First, the parallelism of the algorithm should be very high, and
the calculation logic of each parallel thread should be simple.
Second, the number of iterations of the algorithm should be
less.

1) Network Model

This paper models the SDN network as a directed graph
G(V, E), where V represents the set of all nodes, and E is the
set of all links. N = |V| and m = |E| represents the number
of nodes and the number of edges, respectively. For each link
(i,7) € E, w;; represents the weight of this link (¢, ) (the
cost required to transmit one unit of traffic). For each link
(1,7) € E, c;; represents the capacity on this link. Suppose
D represents the set of business requirements that need to be
routed. For business d € D, s4 represents the source node of
the business, t4 represents the destination node of the business,
and b,,, indicates the required bandwidth of the business d.

2) Problem Formalization

In this section, we model the traffic engineering problem
in the network as a mixed-integer programming model. We
use network traffic as the input of the problem and find the
optimal route to minimize the cost function.

The cost function is usually set to the level of the network
congestion assessment. For example, the most commonly used
cost function is the maximum link utilization (MLU), which
is simply defined as the link utilization of the link with the
highest utilization [16], [17]. Others [18], [19] take the sum of
the link utilization of all links as the cost function. The logic
of the link utilization cost function is:

(1) Low link utilization means low network latency.

(2) Maintaining low link utilization means that more band-
width is reserved for other services arriving in the future.

However, a large number of experiments based on actual
topology show that the link utilization cost function, especially
MLU, in the case of a large amount of network congestion,
MLU only optimizes the maximum link utilization, but cannot
give a feasible (satisfying capacity constraints) solution. So as
an alternative, this paper uses routing cost as a cost function.
When a disaster happens, a batch of services will arrive within
a short period of time. The controller needs to calculate the

path that satisfies the link capacity constraints and minimizes
the total routing cost. In order to make as many services as
possible join the network, we combine the flow characteristics
of the data center to give priority to meeting the needs of small
flows. Meanwhile, we set the cost of blocked flow to a larger
value as follows.

> 1) ()

deD
_ f(eps) + c(Cpg P*)) - b, joined
fd) = { W b, blocked P

Our cost function is the sum of the routing costs of each
business, and the routing cost of each business is a branch
function. When service can join the network, the routing cost
of the service is the product of the service flow size and the
path unit cost. For example, in the first branch of f(d), we
use pg to represent the calculated path corresponding to the
business d, and ps represents the links that are marked as small
flow preference links, Cp . means the absolute complement of
Ps in pg, and c(ps) means the unit cost of this link set pg,
the unit cost of the link set c(ps) = >_; ;yep, 107Vw;; is the
sum of the unit costs of the links it passes through, x indicates
whether this set is a small flow preference link set, y indicates
whether this service is marked as a large flow service, z, y are
0, 1 integer variables. When the large flow flows through the
small flow preference link, we increase the routing cost by a
factor of 10 to reduce the impact on the small flow and make
the small flow route more quickly, thereby ensuring that as
many users as possible are served within limited resources.
When the service is blocked, we punish it, such as the second
branch of f(d), we set the unit routing cost of the service to a
larger value W, which is much greater than all possible path
costs of the service. This can punish blocked services, thereby
reducing the blocking rate.

In order to make the expression uniform and convenient to
express, we first construct the auxiliary edge set E,. Initially
set F, is empty, then for Yv,u € V,v # u, we add a link
(v,u) in E, and set the capacity of link (v,u) and the cost
as oo and W respectively. Then, we add the links in set E,
to the original graph G(V, E) to get a new graph G(V, Ey),
which is E, = E U E,, then graph G,(V, E,) has enough
capacity to accommodate business needs. If a certain service
is routed to the link of data set E,, it means that this service
is blocked. After constructing the auxiliary graph G(V, Ey),
the cost function of the traffic engineering problem can be
expressed as the formula (3).

*

2" = minimizef(d) = Z (c(ps) + c(Cph)) - bu,

deD

3
- Z Z 10%wij - bu,
deD (ij)epa
1 if i =sq
Sooali— N ali={-1 ifi=ty 4)

(1,5)EEy (j,i)EEy 0 otherwise
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where z¢; is a 0, 1 integer variable, and xfj = 1 indicates that

the route of the business d has passed through the link (i, j).
In order to avoid link congestion, routing needs to meet link
capacity constraints in formula (5).

> ad bu, <y, VL) € B (5)
deD

In this model, the number of variables increases in multiples
with the size of the business volume and network size, so this
MILP model is difficult to solve in large-scale situations.

3) Lagrangian Relaxation based Model

In the model (formula (3), formula (4) , formula (5)), the
network capacity constraint (formula (5)), links all routing
variables together, because the value of these variables must
ensure that the traffic occupied of each link is smaller than the
capacity of the link. Because of link capacity constraints, the
routing of each service becomes not independent of each other.
But to take advantage of the parallel nature of the GPU, it is
necessary to find the possibility of independent calculation.
Therefore, this paper uses the Lagrangian relaxation method
to decompose the traffic engineering problem into a batch of
routing calculation problems. These routing calculation prob-
lems are independent of each other, which are very suitable
for parallel computing.

Relax the network capacity constraints in the model (such
as formulas (3), (4), (5)) into the objective function then get
the following Lagrangian subproblem.

L(X\) =min Z Z 10" wj; - bu, ~:C§1j+
deD (i,j)EE

(6)
Z Aij (Z buw, -w?j - Cij) )
(i,7)EEy deD

where \;; represents the Lagrange multiplier of link (4, j).
The formula (6) can also be expressed as:

L) =min Y > (10" wi; + Aij) - bu, - 25—

deD (i,j)EEy

Z /\ijcij

(i:j)eEb

)

which is limited by formula (4).

The term ) ; i cp, Aijci; in the objective function of
the Lagrange subproblem does not change with the change
of the Lagrange multiplier. This paper will discard it as a
constant term and will not discuss it. After discarding the term
> (1.)EEy Aijcij, the objective function of the Lagrangian sub-
problem only contains the product of the cost parts 10*Yw;; +
Aij and by, -af;. Note that 37, o (107w, +Xij) b, -2
represents the routing cost of the business d. Therefore, the
objective function of the Lagrangian subproblem is to mini-
mize the sum of the routing costs of all services. Observing
the constraints of this subproblem, we find that each constraint
contains only one variable related to business needs. So this
Lagrangian subproblem can be decomposed into a series of
independent shortest path problems (each service requirement
corresponds to a shortest path problem), but the link cost of

these shortest path problems has changed, and the link cost
has become related to the Lagrangian multiplier A, which
means that given a Lagrangian multiplier A, we can consider
the Lagrangian subproblem as the shortest of a batch of
single services path problem. We can solve this Lagrangian
subproblem by calculating a series of shortest paths in parallel.

Because after relaxing the capacity constraint into the cost
function, it will not increase the value of the objective function.
L()\) becomes the lower bound of the optimal objective
function value of the original problem, z* > L(\). In order
to get the tightest lower bound value, we have to solve the
following optimization problem.

L*(\*) = maximizeyL(\) 8)

which is limited by formula (4).

The above optimization problem is also called the dual
problem of the original traffic engineering problem (formula
(3), formula (4), formula (5)) [20]. Where \* represents the
optimal Lagrange multiplier. In order to get the optimal mul-
tiplier \*, we can use the sub-gradient optimization algorithm
to solve. When calculating the sub-gradient optimization, the
multiplier A0 is initialized for the first time, and then update
the multiplier by formula (9).

i
9
<Z$§lj'bwdcz’j>] ; ®

deD

AT = AF + Org®

= A + Ok

among them, /\fj represents the Lagrange multiplier corre-
sponding to the edge (i,7) in iteration k, and ¢* is any
subgradient of L(A\) to A*, ) indicates the step size of
iteration k, and the symbol [a]" indicates the part of the
positive sign bit in a , which means [o]" = maz(a,0). It
can be seen from the formula (8) that if the sum of the traffic
on the link exceeds the capacity on the link (i, j), the Lagrange
multiplier )\fj of the link (i, ) will increase, which means that
some business traffic needs to be removed from the link (4, j).
In addition, in order to avoid the link cost of negative weight,
when the link capacity is greater than the traffic of it, we do
not reduce the )\fj of this link (4, j).

Based on the above discussion, we give a parallel traffic en-
gineering algorithm based on the Lagrange multiplier method,
which mainly includes the following steps:

1. Initialize link weight for G(V, E)

2. Calculate the shortest path of all services, where the path
calculation task is assigned to the GPU for parallel calculation.

3. In order to obtain the optimized objective function value
of the original problem from the currently calculated path,
adjust the path calculated by step 2.

4. Update the link weight. After the update is completed, if
the stop condition is not met, return to step 2.

4) GPU based Parallel Routing Calculation

In each iteration, the algorithm calculates the shortest path
for each business. However, the logic of the shortest path
algorithm is too complex for the GPU, resulting in the inability
to fully utilize the GPU’s massive parallelism. In order to



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 1, ISSUE 1, JANUARY 2021 13

improve the degree of parallelism, we need to parallelize the
shortest path algorithm.

Authors in [21] proposed a parallel implementation of
Dijkstra’s shortest path algorithm on the GPU. However, from
the analysis of the algorithm structure, Dijkstra’s shortest
path algorithm is not suitable for the design of parallel
algorithms [22], so the implementation of Dijkstra’s shortest
path algorithm on the GPU cannot get a good acceleration
effect. The complexity of the Bellman-Ford [19] algorithm is
(IV|-|E|), this algorithm complexity is generally higher than
that of Dijkstra’s shortest path algorithm. However, because
the operation of the Bellman-Ford algorithm is independent
of each relaxation edge, thus, the Bellman-Ford algorithm is
easier to make parallel on the GPU. In order to get a better
acceleration effect, we choose the Bellman-Ford shortest path
algorithm for parallel implementation.

The CUDA implementation of the parallel Bellman-Ford
algorithm for multiple businesses is shown in the Algorithm
1.

Algorithm 1 Parallel Bellman-Ford Algorithm for Multiple
Businesses

Require: Business requirements set D; link set E
Ensure: Set of shortest paths for business requirements P
1: Add the source node of the business to the set S

Mark + 1
while Mark > 0 do

Mark < 0

KERNEL_DISTANCE_UPDATE(S, F, Dist)
end while
KERNEL_PREDECESSOR_UPDATE(S, F, Dist, Pre)
Rebuild the shortest path of the business according to the
predecessor data Pre, and add the path to the set P

o S I U S i

It should be noted that the thread is executed independently
on the GPU, there will be synchronization problems when
updating the distance mark and the precursor mark of a
node. To avoid this synchronization problem, we use two
kernels, one is kernel_distance_upadte that is used to update
the distance label, the other is kernel_predecessor_update that
is used to update the predecessor node.

1: function KERNEL_DISTANCE_UPDATE(S, E, Dist)

2 bid < blockID

3 tid < threadl D

4: s «— S [tid]

5: e « E [bid)

6 if Dist [s] [e.tail] +e.weight < Dist [s] [e.head] then
7 Mark + 1

8 Dist[s] [e.head] < Dist [s] [e.tail] + e.weight
9: end if

10: end function

5) Link Weight Update

In our algorithm, at the (K + 1)th iteration, the weight of
link (i, 7) is updated to wf; + /\f;’l, where )\f;’l is updated to
formula (9). In order to ensure convergence, this paper adopts
a simple but effective link weight update step size, assuming

1: function KERNEL_PREDECESSOR_UPDATE(S, E, Dist, Pre)
2 bid < blockI D

3 tid < threadl D

4: s« S [tid]

5: e < E [bid)

6 if Dist [s] [e.tail]+e.weight = Dist [s] [e.head] then

7 Pres] [e.head] = e.tail

8: end if

9: end function

that 9? is the link (i, j) at kth iteration. If the step size needs
to be updated, then 67 is:

9? = ' d

|¢ij = 2aep Tijbuwal

From the formula (10), we can see that if the amount of
traffic carried on a link exceeds the capacity of this link,
the weight of this link will increase by 1 before the next
iteration. For other links whose traffic meets the constraints,
their weights will not change. The experimental results show
that this coarse-grained update operation greatly reduces the
number of convergence iterations of the algorithm, thereby
greatly reducing the running time of the algorithm.

The Lagrangian relaxation method decomposes the original
problem into individual shortest path problems, which allows
the algorithm to be designed in parallel. However, because
each subproblem is independent, each problem is greedy when
seeking the shortest path, which may cause a large number of
services to seize the same batch of links and cause congestion.
Once congested, the link weight will increase. And it will
cause a large number of business groups to abandon this
batch of links to seize other links, so that other links are
also congested, forming a vicious circle. Finally, the algorithm
converges to the local optimal solution in advance. In addition,
in order to pursue fast convergence, we simply increase the
weight of each edge that exceeds the capacity constraint by
1. This coarse-grained increase may increase the congestion
cycle.

In order to solve the situation where the coarseness of the
link increase is too large, this paper uses a random update
strategy. For an edge (4,j) whose flow exceeds the capacity
constraint, we update the weight with a probability of ¢, and
the weight increase granularity of each edge is still 1 unit. Our
experiment shows that this new strategy can solve the more
optimal solution while ensuring the convergence speed of the
algorithm.

6) Path Adjustment

Note that under the optimal weight cost (optimal Lagrangian
multiplier), the set of links solved by the algorithm is the
optimal solution of the Lagrangian dual problem, but it is
not necessarily feasible for the original traffic engineering
problem. Because each service does not consider the path
selected by other services when selecting a path, leads to link
conflicts, it is not a feasible solution to the original problem.

To illustrate the business path adjustment algorithm, we
introduce some symbols, assuming that P represents the
calculated set of paths, where p; € P represents the path

(10)
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of the business d, rpy represents the available bandwidth of
the path pg, and rpg = min {r. | € € pq}, where r. represents
the remaining bandwidth of the link e, and D; represents the
remaining service set.

The path adjustment algorithm is shown in Algorithm 2.
The main idea of the path adjustment algorithm is to obtain
the optimized feasible solution of the original problem by
adjusting the path of a small part of the business. The
algorithm first sorts the services. On the one hand, to make
the objective function smaller, those services with larger traffic
requirements are preferentially added to the network. However,
if the routing costs of large-traffic services are high, after a
long path, a large amount of link capacity resources in the
network will be wasted. So the algorithm sorts the current

w‘d , where

solution and its path according to the value of \‘/IJT
by, represents the amount of traffic required by the business
d, and |p,| represents the cost of the business d through path
pq. After sorting, the algorithm attempts to add services to the
network according to the order. If rp; > b, indicates that
the service can be added to the network, then join the service
and update the remaining capacity value of the network link.
Otherwise, we add the business to the remaining set D;. After
the loop from line 2 to line 9 ends, we get a remaining network
G'(V', E"). According to the previous discussion, there may
be some equivalent paths in the remaining network, and there
are still many available resources in the remaining links, so
the algorithm calculates the path for the remaining business
D; in the remaining network (lines 11 to 23). The algorithm
sequentially traverses the set D; to see if it can find a path for
the service in the remaining network. First, it removes those
links whose residual capacity is less than the service traffic
bw,. Since the remaining links are residual networks, a path
with a large hop count may be found. If the hop count is too
large, it will occupy too many resources and the optimization
goal cannot be achieved. So we restrict the number of hops, if
|p| < |pal, then add the service to the network, and update the
network link capacity, otherwise we do not add the service to
the network. Although this process calculates the path serially,
this process is very fast, which is mainly due to the following
reasons. First, because the link capacity in the remaining
network is generally small, the links that can participate in the
calculation are very less. For a remaining business d, before
calculating the path, the algorithm will eliminate those links
with a residual capacity less than b,,,, so the network topology
involved in the calculation is actually very small. Second, the
remaining traffic set D; itself is relatively small. Third, the
further the algorithm is executed, the fewer remaining links are
available and the smaller the network will become. Therefore,
through this path adjustment algorithm, a feasible optimal
solution to the original problem can be quickly obtained.

7) Termination Condition

Suppose the optimal solution obtained by this iteration in
the first k& is B*, and the optimal solution found in the (k+1)th
iteration is by ;. If by, < B*, then B* = by . If iterates
continuously L times, B* is still not be updated, the algorithm
is determined to converge and the algorithm stops.

Algorithm 2 Path Adjustment Algorithm

Require: Network topology G(V, E'); Traffic demand set P;
Calculated path set P
Ensure: Adjusted path set AP
1: Sort the business in descending order according to the

value of \/E
2: for d € D do
3: if rpq > by, then
4: Add path pg to AP
5: Update the remaining bandwidth of the link
through by path p, in graph G(V, E)
6 else
7: Add business d to the remaining set D;
8: end if
9: end for

10: G'(V',E")=G(V,E)

11: for d € D; do

12: G'"\V'E")=G'(V',E")
13: for e € E' do

14: if r. < by, then

15: Remove link e from graph G'(V', E’)
16: end if

17: end for

18: Calculate the shortest path p for business d in graph
G//(V// E//)
19: if |p| < |pq| then

20: Add path p to AP and remove business from set
D,
21: Update the remaining bandwidth of the link

through by path p in graph G'(V', E’)
22: end if
23: end for

III. EXPERIMENTAL SIMULATION

A. Scheme Test

We use the multi-site data center shown in the following
Fig. 1 for testing.

We assume the earthquake is coming at the 10?" second and
the disaster prevention department can issue an early warning
signal 4 seconds ahead. So our scheme can receive the disaster
warning signal at the 6! second. And at the 10" second, the
data center A suffers an earthquake and the server becomes
unavailable. In the experiment, we assume that the expiration
time of the DNS cache is 5 seconds, which means the client A
needs 5 seconds before requesting the data center B without
our scheme.

In order to judge our scheme can forward requests to the
normal data center in advance, we simulated 100 requests
per second to access the server. Judging the validity by the
loss of the request. The experimental results are shown in
Fig. 2, we can see that based on our scheme, the request is
not significantly lost. But the architecture without the signal
warning mechanism, between ten and fifteen seconds, the
request is obviously lost until the DNS cache is expired.
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Fig. 1: Multi-site data center network architecture

100

80 4

—»— DADR Scheme
—e— General Scheme

60

40 -

20

success request rate/%

0 2 4 6 8 10 12 14 16 18 20

time/s

Fig. 2: The total amount of success request

B. Algorithm Test

1) Test setup

In order to show the effectiveness and performance of the
algorithm more clearly, this paper makes the simulation by
using the Mininet. We build the network topology on the
Four-way Server that uses Ubuntu 19.10 system which with
the Xeon E5-4669 v3 CPU and Nvidia tesla c2070 GPU,
including the OpenvSwitch general host and link supporting
OpenFlow protocol. At the same time, an external controller
is connected to the Mininet. The controller used in the
experimental environment is OpenDaylight (ODL) [23], and
the LRBFP algorithm is implemented by CUDA 10.2.89 [24].
Then we add the ODL’s function module. The experiment
uses the Fat-Tree network topology [25] in Fig. 3, which
includes the edge layer switches (S5, S6...., S39, S40), the
aggregation layer switches (S3, S4,..., S37, S38) and the core
layer switches (S1,..., S8). Each edge layer switch is connected
to two hosts through two ports. Each aggregation layer switch
or edge layer switch forms a Pod. Each Pod has an available
link and multipath characteristics.

Fig. 3: The Fat-Tree network topology

In the experiment, the data center link bandwidth is 4Gb/s
and the link delay is 100us. In the data center server, we
choose H1, H5,...,H25, H29 as the aggregator, H2 — H4,
H6 — HS,..., H26 — H28, H30 — H32 as the worker. The
short flow is simulated by using the query flow of the web
search scenario. The client sends a random size data between
1kb and 10kb request to the random aggregator. The aggregator
randomly selects a worker as a receiver. After receiving the
request, the worker returns a random size data between 1kb
and 100kb response to the aggregator, and the aggregator
returns it to the user. The large flow is simulated by using
the download flow of the video viewing scene. The client
sends a random size data between 1kb and 10kb request to
the random aggregator, and the aggregator randomly selects a
worker as the receiver. After the worker receives it, it returns
a random size data between 100kb and 100 response to the
aggregator, which returns to the user. In the simulation we
randomly request the query flow and the download flow at a
ratio of 1: 9, and send about 3000 requests per second.

After the system has been running for 5 seconds, we
doubled the request to 6000 per second, in order to simulate
the scenario of a large amount of sudden traffic enters the data
center when a disaster happens.

2) Results

In order to verify the ability of our proposed algorithm to
deal with a large amount of sudden traffic, the experiment
intends to use delay and packet loss rate as comparison
parameters. We also compare the proposed LRBFP algorithm
with the ECMP algorithm [26] and the Extending Dijkstra’s
shortest path Algorithm(EDA) [27] instead of the LOBUS, or
LBMS, since they are intended to be used in scenarios different
from the proposed algorithm.

From Fig. 4 and Fig. 5, we can see that the ECMP algorithm
is obviously insufficient in processing capacity when faced
with a large amount of sudden traffic, the packet loss rate
and delay are high, and the packets loss rate of the proposed
LRBFP algorithm is significantly better than the other two
algorithms. Although the delay is higher than before, it is
within an acceptable range. And compared with the other two
algorithms, it is obviously better. The obvious delay increase
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of the LRBFP algorithm in 5-8 seconds is due to the algorithm
being executed and the system running the default routing
strategy. In our proposed scheme, we can actually know the
traffic information in advance and conduct calculations. In this
experiment, we do not simulate it.
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Fig. 5: Packet loss rate comparison

Our experimental results show that when a disaster happens,
which results in a large amount of sudden traffic, our LRBFP
algorithm can effectively reduce the packet loss rate and delay,
and the disaster response-ability is strong.

At the same time, in order to verify that the algorithm
can handle more services in a limited time, we conduct an
experimental analysis on the running time of the following
algorithms, i.e., Serial Dijkstra shortest path Algorithm (SDA)
[28], Parallel Dijkstra shortest path Algorithm (PDA) [21] and
the proposed LRBFP algorithm. We use the Erdos-Renyi (ER)
[29] model to generate the experimental network topology. We
set the number of topology nodes to 1000, the link capacity
to a random value between 50 and 200, and the link cost to
1. The number of requests gradually increases from 1000 to
10000, and the size of the service is set to a random value
between 1 and 100.

In Fig. 6, we can see that with the number of requests
increases, the calculation time of the SDA algorithm increases
significantly, and the LRBFP algorithm using GPU accelerated
parallel computing has a smaller increase. The acceleration
advantage of the algorithm becomes larger, which also ensures
the algorithm’s ability to process massive data at the event of
a disaster.
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Fig. 6: Calculation time comparison

3) System Load

According to the above experiments, the results show that
our algorithm based on GPU parallel computing LRBFP has
better performance than traditional CPU algorithms. In order to
more clearly show the performance advantages of our LRBFP
algorithm, we also detect the load information of GPU and
CPU to prove that it won’t bring additional overhead to the
controller.

As shown in Fig. 7, we count the system load information
every second. It can be seen from the statistical results that
the average CPU load is maintained at about 40% caused by
the simulation program. In Fig. 7, it can be seen that the CPU
load has slightly increased after the disaster. This is due to the
increased temperature caused by GPU running of the chassis,
which slightly affects the CPU performance. In generally, the
experimental results show that our algorithm does not bring
additional overhead to the system.

IV. CONCLUSION

With the help of SDN technology, this paper proposed a
disaster aware dynamic routing (DADR) scheme. The scheme
adopts the SDN centralized control method to receive the
disaster warning signal and notify the GSLB device to make
corresponding adjustments. At the same time, the SDN con-
troller transfers the session and flow information to other data
centers. In this way, it can achieve switching without users’
attention and other data centers can calculate the flow path
in advance according to the flow information. For the other
data centers, combining the characteristics of data center flow,
this paper proposed a Lagrangian Relaxation based Bellman-
Ford Parallel (LRBFP) algorithm. The main idea is that the
controller monitors the data flow, distinguishes between large
and small flows, and marks the small flow preference route,
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dels and relaxes the network. We design an algorithm

suitable for GPU parallel operation to guide the large flow

to

avoid such routes for path allocation operations. In this

way, under the limited network resources, it can meet the
access needs of most users as much as possible. Finally, we
validated the proposed DADR scheme and LRBFP algorithm
through simulations and made comparisons with the existing
traffic scheduling methods. Our scheme can ensure that users

are

not aware of switching when a disaster occurs. And when

a large amount of sudden traffic flows into the data center, our
algorithm can provide services for as many users as possible
under the case of lower delay.
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