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Abstract

Representation of structurally significant data is indispensable to modern research. The
need for dimensionality reduction finds its foray in varied genres viz-a-viz, Structural
Bioinformatics, Machine Learning, Robotics, Artificial Intelligence, to name a few. The
number of points required to effectively capture the essence of a structure is an intuitive
decision. Feature reduction methods like Principal Component Analysis (PCA) have already
been explored and proven to be an aid in classification and regression. In this work we
present a novel approach that first performs PCA on a data set for reduction of features
and then attempts to reduce the number of points itself to get rid of the points that have
nothing or very little new to offer. The algorithm was tested on various kinds of data (points
representing a spiral, protein coordinates, the Iris dataset prevalent in Machine Learning,
face image) and the results agree with the quantitative tests applied. In each case, it turns
out that a lot of data instances need not be stored to make any kind of decision. Matlab
and R simulations were used to assess the structures with reduced data points. The time
complexity of the algorithm is linear in the degrees of freedom of the data if the data is in a
natural order.

Keywords

Dimensionality Reduction, PCA, Protein Conformations, Non-linear feature reduction, Data
instance reduction

1. Introduction

Dimensionality reduction is a process of expressing high-dimensional data using a
low-dimensional representation, while trying to preserve the variance in the data as much as
possible. Principal Component Analysis is now one of the age-old and well-established
methods for feature reduction [1]. It takes as input a data matrix with M observations and N
features. The algorithm performs an orthogonal linear transformation and produces the
principal components, which are the eigen-vectors of the covariance matrix of the original
data that in decreasing order represent the variance captured by them. The components are
obtained from the Singular Value Decomposition of the data matrix. More details of the
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core algorithm can be found in [2, 3].

There are many approaches to obtaining these principal components, some of which are
categorized as robust. Such algorithms, take into consideration the sparseness and possible
corruption in the values of the data matrix [4]. We use one such approach called the
spherical PCA. The data points in this approach are projected onto a sphere. The sphere is
centered around the biggest cluster in the dataset and the radius is so chosen that most data
points are covered. It offers a clever way of dealing with the outliers inherently present in
the data. A single outlier affects the average of the data tremendously and ultimately the
direction of principal components [5].

Real world structurally significant data is often so huge that its processing and analysis
is long and tedious. Such datasets are also intensive on the system’s memory. Also, in
higher dimensions, the data becomes sparse. Consider the ratio of the areas of a square of
length r and that of a circle of radius r, which is about 0.3183. Now consider the ratio of the
volume of a cube and the volume of a sphere in three dimensions, the ratio now becomes
approximately 0.2387. This ratio continues to decrease as the dimensions increase, which
indicates that in high dimensional data the significant information moves towards the
boundaries. The notion is referred to as the curse of dimensionality. Therefore, there arises
a need for an algorithm that would make a decision as to whether a particular data instance
in high dimensionality contributes to the shape of a structure or not. In particular, the
motivation for this work was forked off because of dealing with humongous molecular data
sets[6, 7]. These data sets are often in the form of text files of the order of 25 MB. Each row
of these files represents a conformation that the molecule can have. Each conformation is
represented by a set of attributes. These attributes can be normalized and reduced using
various feature reduction techniques like PCA itself. Studies have shown that not all of
these conformations need to be worked with to understand macro-molecular dynamics
[8-12]. Our algorithm reduces the number of these conformations in a way that reduces the
vast conformation space of proteins.

1.1. Contribution of the Work

The goal of this work is to obtain a reliable method to reduce the number of observations
for data sets while losing as little information as possible. It finds relevance in the fact that
lesser points would need less storage space and also reduce computing times of algorithms
used to analyze these data sets. PCA processing in this work is used so as to obtain three
distinctive features of the data that among themselves preserve the most variance. The
algorithm then assesses the information content offered by each point. The assessment
is done by the relative positioning of the points in the space defined by these first three
principal components. As the Abstract claims, the algorithm has been shown to produce
noteworthy results in eclectic data sets. In image processing, the classical techniques of edge
detection and image recognition are of paramount importance. The algorithm can be an aid
for all of these procedures. Details of more widespread applications of image processing
with efficient data reduction and its importance in the medical world can be found in [13]
and [14].

1.2. Literature Survey

Existing algorithms for data instance reduction are broadly divided into, incremental,
decremental, batch and mixed [15-19]. The incremental algorithms begin with a null set
and data instances are added to it depending on the result of the algorithm. The decremental
algorithms, on the contrary, begin with the entire set of instances and depending on the
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decision offered by the selection algorithms, instances are taken out from the set one had at
the beginning. The batch algorithms function in a way that each instance is first analyzed
and then a decision is made as to which ones to keep. Mixed algorithms begin with a
preselected set of instances and the process then continues to figure whether instances
should be deleted or added. The proposed algorithm falls into the decremental bracket.

An evaluation of the age-old techniques of instance reduction is explained in [15, 20].
Another work that performs an elaborate evaluation of existing algorithms and presents two
ways based on Locality Sensitive Hashing [17] is presented in [16]. Another novel approach
based on similarity calculation between instances and then clustering is presented in [18].
Another novel entropy based approach is presented in [19]. All of these algorithms are
aimed to produce the best training set to produce accurate classification of a dataset. The
algorithm proposed in this work explores a range of datasets and has been shown to work in
each scenario. Comparative results and their analyses are provided in section 3.3.

2. Methods

As mentioned earlier, the first step is to perform spherical PCA on input data matrix. The
data matrix could be a distance metric for all the data instances or a combination of attributes
that measure the similarity of each data instance. If the data has non-numerical information,
then that information needs to be translated into numerical data. Computing spherical
principal components is a well known algorithm and we followed the procedure described
in [4, 5, 21]. We wrote a short Matlab script for the purpose, it takes as input the data
matrix (with only numeric features) and the number of dimensions (principal components)
desired of all the data instances. The output is a matrix file that retains all the points with
the number of desired principal components. We work with two and three dimensions, in
order to better visualize structurally significant data. It is observed that over eighty percent
of the variance is explained by the first three principal components in all kinds of data the
algorithm was tested on, although it is not always the case. The method can be readily
extended to higher dimensions. PCA redoes the features of the data set and produces a new
set in decreasing order of variance captured by each of them. The relative values of these
high variance capturing principal components is used to pick the relevant data instances.
The process of collecting data for any experiment brings about a natural order among the
instances. The proposed algorithm expects such order. If no such order exists, or there is
very little information available about the dataset, a sort would need to be performed based
on the first principal component.

2.1. General Outline

The data set at the beginning has N rows and M columns. The PCA processed data with N
rows and three columns (first three principal components is fed to the algorithm). For a
blind dataset (or a data set of known random nature), a sort should be performed based on
the first principal component so that the points can be processed in order. Following is the
pseudo-code that describes our approach:

Input: a numerical matrix of N data points

//2-D case: data set has N points
. for i=2:N-2 {
a = ratio of slope between i-1, i and i,i+1
if(a < threshold)
remove point i

O U WN
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Figure 1. Elucidation of the Algorithm. The middle point would be kept or rejected

depending on where it lies with respect to the other two.

7. //3-D case: the data set now has Q points (Q<N)
8. for g=2:Q-4 {

9. P1 = position vector of point g-1
10. P2 = position vector of point q
11. P3 = position vector of point g+1
12. P4 = position vector of point g+2
13. N1 = cross product(P1-P2, P1-P3)
14. b = angle between N1 and P4

15. if (b<pi/5 || b>3%*pi/5)

16. remove point g+1

17. }

Output: a numerical matrix with a no. of data points that is <<< N

2.1.1. Projection Score

We seek an optimum value of the slope threshold (in line-4 of the algorithm above) and the
angle between planes (line 14). Their optimality is decided by the what is called the
projection score of a dataset. It implies how much a given point contributed to the variance
of the entire data set. A mathematical formulation of a proof of correctness has been
adapted from a method described in [22]. This work formulates a way to credit the
informativeness of a variable in huge data sets. We use this formulation on data instances
instead of features. For this, first the matrix is multiplied by its transpose to obtain an
empirical covariance matrix. Let A be the data matrix of dimensions N x M. The covariance
matrix of dimension N X N is:

Cov(A) =AxAT )]

Next, the eigen-values of the covariance matrix are computed. Let A, denote the eigen-value
in x'" dimension. The ratio of the sum of these values in rejected data points to the total
number of points is referred to as the projection score of these data instances. Let S denote
the set of points eliminated by the algorithm, projection score & can be denoted by the
following equation.

_ erS A'X
YA
The lower this number is, the lower is the information content offered by this set of points.

This number is found to be of the order of 10~ at the very least in almost all data sets. The
Projection Score column of Table-1 shows these results.

o

2

2.2. 2D case

To decide whether a point can be removed from a projection, we measure how much
information it adds to it. Intuitively, if three close by points are co-linear, the middle point
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Figure 2. The Algorithm in three dimensions. Amongst the four co-planar points the one
encountered third would be rejected or kept depending on how much the plane is to be tilted
in order to include the point that is out of the plane.

does not add new information to the projection. To obtain information about these points,
the first two principal components are traversed in the order in which they exist in the data
file and the information content offered by each point is assessed as follows: Given three
points py, pa, p3 at coordinates (x1,y;), (x2,y2) and (x3,y3), respectively, then the threshold
is defined as the ratio of the slopes of the lines p; — p» and p; — p3:

Y21
Xp—x N2—=—yY1r _X3—XxX2
o = % @)
s X2 —X1  Yy3—y2

If this change of slope is above a threshold, the middle point is kept, otherwise it is
discarded. Figure-1 illustrates an example of three points. The middle point is the one
being investigated. The method checks for collinearity. The ratio of slopes that constitutes
collinearity depends on the kind of data. To find an optimal value we conducted a binary
search starting from a given threshold, as detailed below. The threshold values for the
various data sets are reported in the last column of Table 1. This value of the threshold
maintains much of the variance in the data, while rejecting the most number of points.
The process is explained in detail in Section 2.4. Decreasing this number any further may
eliminate more points from the set but loses too much of its variance, according to the score
described below.

2.3. 3D case

A straightforward extension of this algorithm can be applied to three dimensions, where we
seek to eliminate points that do not contribute to the projection by testing whether they are
co-planar with three other close-by points. Since every three points define a plane, a fourth
point on the plane does not contribute to the projection. The algorithm is performed on the
reduced data set received from the two dimensional projection. As before, the points again
are traversed in the order they appear in the dataset (or the sorted order based off of first
principal component if the data was know to be random). In a sequence of four points, the
threshold (the definition of threshold here is the same as in 2-D case) of angle required to
tilt the plane on which the first three points lie helps in deciding whether the fourth point in
this sequence is informative or not. If this change of angle is above a threshold, the fourth
point is retained, otherwise it is rejected. The details of how this is achieved are in the next
section. Figure-2 provides for visualization of this procedure in three dimensions.

2.4. Determining the Threshold

As mentioned earlier, the thresholding here is paramount and depends on the kind of dataset
being dealt with. For a new (blind) dataset, we start with an initial slope ratio value (for
the 2-D case). Starting with 0.5 we assess the results based on the percentage of points
eliminated and the projection score defined below. Assessing the results, there are three
options, this threshold is either adequate, too high, or too low:
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1. If the initial value 0.5 is too high, the reduced dataset will be too small. Per our

definition, this means over 75% of the data is lost and the projection score is 102 or
higher. A combination of the percentage of eliminated points and the projection score
decide whether the subset obtained is acceptable or not. For example, in the Swiss
Roll dataset, described in the following section, the percentage of points eliminated
is at slope threshold of 0.5 was over 75%, but the projection score is much lower
(Table-1, column 1) which meant that a slope threshold of 0.5 is not too hight this
dataset. But for the datasets that do fall in this category, the next step would be to
perform a binary search between 0 and 0.5, to obtain an optimal threshold. The next
value of threshold to try would be 0.25, if the projection score is still high, try 0.125
and so on. The maximum number of trials in this study, 15 iterations, were needed for
the face image dataset.

. If the initial value 0.5 is too low, the dataset ends up retaining most of its points.

By our standards, it happens if only 15% or fewer points of the original data are
eliminated. In this case we perform a binary search between 0.5 and 1 until the
convergence criterion mentioned above in the first case is achieved. All of the protein
datasets in this study fall into this category, where (even though we began with a
much lower threshold for experimentation purposes), the eliminated points were well
above 60% and the projection scores as low as 10> were achieved.

. The slope threshold of 0.5 is considered near adequate if the percentage of points

eliminated are between 15 and 75. In this case, the threshold and the corresponding
projection score should be considered for the values of slope threshold of 0.4 and 0.6.

a) If the percentage of points decreased is less than 50 and the threshold of 0.6
results in an even smaller dataset while maintaining (or lowering) the projection
score, we perform a binary search between 0.6 and 1. If not, the search should
be between 0.5 and 0.6. As soon as the projection score becomes higher, stop
and return the slope threshold for this dataset.

b) If the percentage of points eliminated is over 50, we still try a higher slope
threshold of 0.6 because the goal here is to be able to represent data with as fewer
points as possible while capturing maximum variance. The spike in projection
score is evident of the fact that informative point(s) have been removed from the
dataset. Reducing the threshold to 0.4 results in a comparatively larger dataset
while maintaining the projection score, we conduct a binary search between
0.4 and 0.5. If the projection score at 0.4 becomes lower, it is indicative of the
fact that at the threshold of 0.5 there has been a loss of few informative points.
The search should then be between 0 and 0.4. As soon as the projection score
becomes higher, stop and return the slope threshold for this dataset.

5-6 trials are usually enough for the purpose. Most machine learning datasets fall in
this category.

Figure-3 shows the process for the two extremes. In both the cases the stopping point
for the threshold for the process is decided by the projection score at that point for the
corresponding dataset.

. As mentioned earlier, the next step is to try to eliminate even more points from the data

set by progressing onto the 3-D version of the algorithm. The decision of rejecting
a point, in this case, is determined by how much the plane created by the previous
three points is to be tilted in order to accommodate the current point. The process of
determining this angle threshold is the same as for the slope threshold. The angle
that we begin with is 7/2 (and 3 x 7 /2 to account for the negativeness of the angle).
Depending on the size of the reduced data set and the projection score, a binary search
can be started between 7 and 7/2 or 7/2 and 0.

Also, besides the projection score and the percentage of points eliminated, each dataset has
its own method of evaluation that presents insight. The goal of Supervised Learning is to
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Figure 3. Slope Threshold versus the percentage of points reduced. In both the cases the
stopping point for the threshold for the process is decided by the projection score at that
point for the corresponding dataset.
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Figure 4. 2-D PCA projection of the Swiss Roll dataset with 1600 (left), 833 (middle) and
210 points (right).

exploit the information known about the dataset. The datasets that represent a shape, like
the Swiss Roll and Face Images, can be evaluated on the basis of their simulation as well. In
the context of machine learning, the reduced dataset is treated as a training set to classify
the rest of the data, details can be found in section 3.2.1.

3. Results and Discussion
3.1. Simulation Results

3.1.1. Swiss Roll Dataset

Figure-4 (left) shows the PCA projection of a data set representing a Swiss Roll [23, 24].

It is a two dimensional projection that uses 1,600 points to represent the structure. After
applying just the 2-D version of the algorithm, about half of these points were found to be

redundant. Figure-4 (right) shows the plot of the PCA projection of the remaining points.

Only 833 points were used to construct this plot. As mentioned earlier, this is one of the
datasets that represent a shape. Apart from the projection score and the percentage of
elimination of data instances, the simulation results are quite instrumental in determining
the validity of a reduced subset of points. In search of validation, a very different kind of
structurally significant data set was chosen next.
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Table 1. Projection Score trends in various data sets

Data Set Projection Score % of points eliminated  Reconstruction Error ~ Slope Threshold
Swiss Roll 3.204% 107 86.875 0.006 0.99
Human Galanin 2.159%107° 68.954 1.562 0.76
CDC42 1.42%1073 69.875 1.022 0.78
Vasopressin 1.893 %1073 74.302 0.358 0.82

Lena Image 2.03%1073 53.36 0.13 0.00001

Iris Dataset 7.37%107° 52.67 0.02 0.16
Isolet Dataset 6.4%1073 40.23 0.14 0.46
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Figure 5. 2-D PCA projection of the Human Galanin dataset with 22750 (left) and 15680
(right) points respectively.

3.1.2. Protein Datasets

We used simulations of protein structures. As mentioned in section 1, these molecular
datasets are in the form of matrices, each row of which represents a conformation that the
protein can attain in its trajectory. The data was created using Molecular Dynamics (MD)
simulations [25]. If a molecule is composed of N atoms, it has N x 3 attributes (columns),
taking into account three-dimensional coordinates of each atom, that distinguish a
conformation. The two structural extremes of the molecule are represented often with tens
of thousands of conformations, making the data humongous. Human Galanin is one such
example. It is a neuro-peptide and is a known heavy protein molecule with ample structural
niceties. Figure-5 (left) shows a two dimensional plot of the PCA projection of this
macro-molecule with 22750 data points. The algorithm does away with about two-thirds of
these points. Figure-5 (right) is a PCA plot of the reduced data and was constructed with
15,680 points.

These results were obtained with just the application of the two-dimensional version
of the algorithm. To do further tests, a set of medium to large protein molecules with
well-established structures were chosen. Figure-6 (left) shows the three dimensional plot
of the PCA projection of one such protein, Cdc42, with 20,000 instances. Cdc42 is a
protein from the Ras superfamily, involved in regulation of the cell cycle and has been
shown to be involved in oncological processes [26]. When subjected to the two dimensional
version of the algorithm, a data set of about 15,000 points was obtained. The number of
points obtained subsequently by progressing to a plane was 4,985. Figure-6 (right) shows a
three-dimensional plot of these points. When the Swiss roll data set is again subjected to
the progression of the algorithm, a set of 210 points was obtained. A two-dimensional plot
of these points is shown in Figure-4 (right). Figures-7- left and right show the same for
Vasopressin, a hormone. These reduced forms of the protein datasets can be instrumental in
isolation of protein conformations of interest and their trajectory simulation [27-29].
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Figure 6. 3-D PCA projection of the CDC42 dataset with 20000 (left) and 4985 (right)
points respectively.

I*;igure 7.3-D PCA projeéipllon ofthe Vasopressin dataset with 25000 (left) and 5320 (right)
points respectively.

3.1.3. Face Image

In light of the fact that the algorithm preserves a great deal of variance in structurally
significant data, testing it on facial images seemed like a test that would consolidate its
function. In image processing, efficient algorithms for de-noising an image are imperative.
Many filtering processes exist for the purpose [30], [31]. The Lena image, shown in Figure-
8 was used as a test dataset here too. This image is pervasive and was procured form the
Internet with a basic Google search. Its jpg file format was then converted into coordinate
data using the method described in [32]. A two-dimensional projection of these points is
shown in Figure-9 (left). Once a coordinate matrix is obtained, it is PCA processed and the
algorithm is performed as with other data sets. The reduced data set obtained here contained
less than half the points in the original image and its plot is shown in Figure-9 (right). In this
data set, the algorithm discarded almost all the points (only three points were retained) for
the values as low as 0.01. In this case the slope was decreased gradually until a considerable
number of points were retained, which when plotted recreated the structure of the image.
This number was 0.00001. Among the datasets used, this was the most complicated one,
structurally. It had more nooks and crannies to cover in order to capture the variance and
hence the slope threshold here is the lowest.

3.2. Quantitative Analysis

An advantage of using PCA processing presented itself in search of validation proofs. PCA
is linear and the original data matrix can always be recreated. This fact was exploited to
formulate a number termed the reconstruction error. First, the points eliminated by the
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. 9
Figure 8. The original Lena image. The standard test image widely used in the field of
image processing since 1973.

o e 8 Y p
50 100 150 200 250 0 50 100 150 200

Figure 9. 2-D projection of Lena data set with 28,080 (left) and 13,097 (right) points
respectively.

algorithm are removed from the original data, this leaves the data matrix with as many
points as the PCA projection returned by the algorithm (but all the original
features/attributes). PCA projection of this smaller data set is then obtained. Then, the root
mean square deviation (RMSD) of these two embeddings is calculated. This method first
eliminates the translation component by shifting their center of mass to the same place, and
then it finds the optimal rotation between the two sets using Singular Value Decomposition.
The difference between the two structures is reported in the form of an error. Let the two
matrices being compared be, A and B with dimensions N x M. First, the centroid of the two
is found, both the molecules are dragged to the origin by subtracting from each point the
value of the centroid. The RMSD between the structures can then be calculated as under:

™=

1 M
5 L (X (= bij)?) (4)

i=1 j=1
Here, a;; and b;; are the corresponding elements of A and B respectively. The number
returned by equation above indicates how similar the two structures are. It is enlisted for the
various data sets in Table 1 in the column named reconstruction error. Also, as mentioned
earlier, in the data sets the algorithm was tested on, the first three principal components
preserve over eighty percent of variance inherent in data. The PCA projection on the reduced

data set follows these trends very closely. For example, in Cdc42, the first three principal
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Table 2. Residual Variance trends in original data sets

Data Set Variance in 1st PCT  Variance in 2nd PC ~ Variance in 3rd PC
Swiss Roll 55.55 27.87 16.59
Human Galanin 41.22 34.05 24.72
CDC42 42.082 34.35 23.569
Vasopressin 47.75 33.23 19.012

Lena Image 52.88 35.11 13.02

Iris Dataset 78.37 13.59 8.04

Isolet Dataset 57.13 31.06 11.82

Table 3. Residual Variance trends in reduced data sets

Data Set Variance in 1st PC Variance in 2nd PC ~ Variance in 3rd PC
Swiss Roll 63.44 27.30 9.26
Human Galanin 43.112 29.43 27.46
CDC42 49.436 28.34 22.22
Vasopressin 53.68 28.98 17.33
Lena Image 56.07 32.23 10.63
Iris dataset 86.65 10.35 3.00
Isolet Dataset 58.59 31.01 10.40

components capture respectively 42.082, 34.35 and 23.569 percent of variance. In the
reduced form of Cdc42, the first three principal components capture 49.436, 28.34 and
22.22 percent of residual variance respectively. This trend is observed in all of the other data
sets too. It is reported in Table 2 for the original data sets and in Table 3 for the reduced
form of these data sets. If the corresponding principal components capture a similar amount
of variance, this indicates that the algorithm retains those points that actually contribute to
generating the variance values in the original data.

3.2.1. Machine Learning Datasets

The slope threshold defined in Methods and enlisted for all data sets in Table-1 plays a
crucial role in the analysis of datasets for classification and regression. These datasets had
non-numerical attributes and so were pre-processed to either convert them to numbers or
just get rid of them depending on what they represented. Subsequently, the rest of the
algorithm was applied similarly as with other datasets. These were the only datasets that
didn’t represent a structure and unlike the protein datasets, a better understanding of the

!Principal Component
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Figure 10. Full and reduced Iris data set with 150 (left) and 71 (right) data instances
respectively.
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Figure 11. Full and reduced Isolet data set with 6238 (left) and 3164 (right) data instances
respectively.

structure is not what was sought here. Nevertheless, like the protein datasets, a pictorial
representation makes sense in terms of clusters of similar or close by points [33], after a
projection of the original data is obtained (PCA, or any other feature reduction method for
that matter). The first dataset used here was the Fisher’s Iris dataset [34, 35]. Itis a
collection of three species of Iris flowers. It has 50 instances each of Iris Setosa, Iris
Versicolour and Iris Virginica. Iris Setosa is the one that is linearly separable from the latter
two. Figure-10 (left) shows the PCA projection of the entire dataset. The instances differ
on the basis of four attributes, namely, sepal length, sepal width, petal length and petal
width, all in centimeters. Any value of the slope threshold here, as expected, gives two
disjoint sets of data instances. Table-1 reports this value for the Iris data set to be 0.16. The
reduced data set so obtained is the smallest such set which when used as a training set,
produces a 100 percent correct classification of Iris Setosa for the rest of the data set, which
here is used as the validation set. Figure-10 (right) shows the PCA projection of the
reduced Iris data set. Perturbing the slope threshold further to include more data samples, as
expected gives the same results. Increasing the slope threshold any further to obtain an even
smaller training set mis-classifies a few data instances. A slope threshold of 0.17 produced
a mis-classification of 1.92 percent. R simulations with five-fold cross validation using a
Support Vector Machine with a linear kernel were used for verification purposes [36]. The
reconstruction error in Table-1 and the trends in residual variance of Tables- 2 and 3 bear
the same explanation as for the other datasets.

In order to assess the scalability of the algorithm, another multivariate dataset was chosen
to test the abilities of extraction of a suitable training set that produces better classification.
The Isolet dataset was generated for speech recognition [37]. It contains 52 samples of
voice for 150 subjects. Each person uttered a letter of the English alphabet twice. The
dataset, as on the Machine Learning group’s website of University of California, Irvine,[38]
is divided into five groups of 30. Four of these are used as the training dataset and the fifth
one as the validation set. The attributes of this dataset are described in the paper [37]. They
include spectral coefficients like contour features, sonorant features etc, all real numbers
describing a sample of a voice of a subject. The goal of this work was to produce a 26 way
classification, to identify which alphabet was spoken by a subject. It achieves over 95%
accuracy. When this dataset is subjected to the algorithm described in Methods, it again
produces a reduced dataset eliminating 40.23% of the instances. The PCA projections of the
full and reduced forms are shown in Figures-11 left and right respectively. Evident from
the projections, the reduced dataset clearly produces the same clusters. This dataset when
used as the training set also produces the same classification. The procedure was the same
as described for the Iris dataset. The Isolet dataset has more groups to classify than the Iris
and many of these groups (each one representing an alphabet of the English language) are
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Table 4. Comparison of the proposed algorithm with other instance reduction algorithms.

Algorithm Average Accuracy for classification % of points reduced
Instance Based Learning Algorithms [15] 78.85 16.13
DROP-3 [15] 81.14 14.31
Entropy based algorithm[19] ~ 85 88.72
LSH based algorithm [16] ~ 90 =~ 60
Instance reduction Algorithm [18] 78.23 ~ 50
Proposed Algorithm >90 ~70

phonetically more similar than others, so the percentage of points eliminated here should be
lesser than the Iris dataset because the data here is more diverse. This was found to be true,
and the algorithm distinguishes between these two very similar, real-valued, multivariate
datasets by a margin of 12.44% in context of data instance elimination.

3.3. Comparison with Other Instance Reduction Methods

As pointed out in section 1.2, all of the other data instance reduction methods have only
analyzed the machine learning datasets. Therefore, their method of validation is using the
reduced dataset to produce a classification and measure its accuracy. The average accuracy
of classification and the percentage of points eliminated for these methods versus the
proposed algorithm is in Table-4. The datasets used to produce results presented in Table-4
are the same as on UC Irvine’s website, including the Iris and Isolet datasets described
in the previous section. We chose the multivariate ones that have default task assigned as
*Classification’ and have only numerical attribute types, like the Letter Recognition, Breast
Cancer Detection and E.Coli (for prediction of localization sites for proteins) to name a
few. The values for the proposed algorithm in the table have been evaluated to produce the
most accurate classification. If saving space is the motivation, the slope threshold can be
compromised with the accuracy to produce even smaller datasets.

With the exception of LSH, all of the algorithms in Table-4 are linearithmic (NlogN)
at best. LSH, like the proposed algorithm (provided a sort on the data is not needed), is
linear, but works in a very different way. It depends on formulation of hash functions
over the dataset that are sensitive to data instances. In other words, a family of hash
functions represents the various categories a data instance can belong to. Each data point’s
compatibility with each of these functions is evaluated. One point representative of each
category is chosen to be a part of the reduced data set. The point chosen is the first one that
makes its way into a certain category. The proposed algorithm works better for the purpose
as it is adherent to the dataset. It does a better job in evaluating the information content
offered by a particular data point. Only one point per category is not always enough to
represent a category in its entirety. How many and which of the points of a certain category
should be chosen is the strength of the proposed algorithm. Also, formulation of a class
of functions is a task in itself and not having to do so, betters the time complexity. The
proposed algorithm also performs better when the data is highly sparse, or in other words the
categories for classification are of the same order as the number of data instances available.

4. Conclusions and Future Work

The methods and results above manifest the validation of this novel algorithm. The
algorithm not only successfully reduces the data points required to represent a structure, it
does so in a naturally cogent way. More complex the structure, lesser are the number of
points reduced. In other words, the algorithm adheres to the complexities inherent in the
data. Table-1 justifies this assertion. The two dimensional projection of the swiss roll data
set as expected is just a spiral and it is safe to assume that not too many points are required
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to assert that these points indeed represent a spiral. So, as expected, the algorithm
eliminates the largest number of points. Amongst the macro-molecule datasets, Vasopressin
(in these examples) is known to be less structurally complex than Human Galanin and
Ccd42 and so, comparatively, ends up with a smaller portion of data points. A dataset
representing the complexities of a visage intuitively has more intricacies to take care of and
hence the Lena image data set ends up with a large portion of its original dataset. The Isolet
dataset has 26 defined categories and so a training set for the best possible classification
here eliminates lesser points than the Iris dataset.

The assessment of the information content offered by a data instance lets one decide
whether to continue storing the particular data instance or not. The two Machine Learning
datasets were used to draw conjectures of this sort. This could be an aid in determining and
making sure that minimum number of data instances are stored. It would help in deciding
whether new prospective data would affect the subsequent analysis or not. This is especially
useful in large and complex data sets that require a lot of storage. If numerous attributes
identify an instance, being able to do so is a boon. How this algorithm (or a variant of it)
can be used for non-linear classification forms the basis for future work.

What lies ahead is to narrow down a way to obtain accurate projections of larger and
relevant data sets using minimum possible data instances. A way to parameterize the
dissimilarity of data instances would pave the way for non-linear feature reduction and then
ultimately data reduction. One of our primary goals is to reduce protein data sets and use
just enough points to isolate intermediate protein conformations [39, 40, 27]. Their isolation
would be key to characterization of their conformational landscape which would pave the
way for understanding the convoluted relation between protein structure, dynamics and
function.
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