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Abstract 
Measurement of the mechanical dyssynchrony of the ventricle is important for the 
cardiac resynchronization therapy (CRT) and the evaluation of patients with heart 
failures. So far, feature-tracking cardiovascular magnetic resonance (FT-CMR) has 
become the most popular method for measuring the mechanical dyssynchrony. 
FT-CMR calculates the strain values based on the pre-defined segments of the ventricle 
and thus it might miss some important regional information. In this paper, we propose a 
new approach to measure the intra-ventricular mechanical dyssynchrony based on the 
uniformly sampled points from all the regions of the ventricle. Accordingly, the 
proposed approach will not miss any regional information of the ventricle.  In 
addition, the proposed approach is fully automatic and not depedent on the training 
sets. It calculates the mechnical dyssynchrony rapidly and determines whether the 
tested case is normal or patient immdiately. The proposed approach was validated with 
40 tested cases (20 normal cases and 20 patient cases). Experimental results showed 
that the fully automatic intra-ventricular mechanical dyssynchrony measurement 
approach achieved 100% diagnosis accuracy for the left ventricle (LV) and achieved 
95% diagnoisis accuracy for the right ventricle (RV).  

Keywords 
Dyssynchrony, measurement, Image processing, Cross correlation, Strain, 
Feature-tracking cardiovascular magnetic resonance. 

1. Introduction 

Cardiovascular magnetic resonance (CMR) has an established and continuously 
expanding role in tissue characterization and is the modality of choice for accurate 
evaluation of biventricular morphology and function. CMR provides diagnostic 
information that is often expressed numerically. It measures cardiac muscle motion 
and deformation by post-processing of standard gray-scale B-mode or cine imaging, 
resulting in easier access and wider availability. However, it has limited sensitivity 
for identifying regional myocardial impairment. On the other hand, some wall 
motion evaluations were done on a subjective basis that suffers a substantial error 
rate. In the past decades, several CMR techniques have been developed to measure 
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cardiac muscle motion and deformation and FT-CMR was the most popular and 
promising one [1-5]. FT-CMR provides quantitative information about myocardial 
deformation by calculating the myocardial strain (MS) that measures the degree of 
deformation of a myocardial segment from its initial length to its maximum length. 
Longitudinal strain calculates the longitudinal shortening from the base to the apex. 
Radial strain calculates the myocardial deformation towards the center of the LV’s 
cavity. Circumferential strain calculates LV myocardial fiber shortening along the 
circumference in the short axis view. 

At present time, researchers are working toward applying FT-CMR in clinical 
scenarios. Some research work was conducted to determine the normal range of the 
LV strain [6-8] and some research work was conducted to assess the RV strain and 
dyssynchrony [9-11]. From the conducted research work, it is seen that MR strain 
values calculated by different techniques or vendors are significantly different. 
Hence, it is required to develop reference standard from each technique or vendor 
for clinical use. The inconsistency is mainly caused by the use of different 
post-processing techniques from different vendors. However, it also reflects the 
instability of the way to calculate the strain values to some extent. The strain values 
are calculated based on the pre-defined segments of the ventricle and thus it might 
miss some important regional information. Most importantly, it is almost 
impossible to align the pre-defined segments consistently and accurately in different 
frames and slices due to the torsion and displacement of the heart. Consequently, 
the calculated strain values might be very inaccurate for some tested cases.  In this 
paper, we propose an approach to calculate the mechanical dyssynchrony between 
the motions of the sampled points on extracted boundaries of the ventricles and the 
volumetric cycle of the ventricle. Compared to the limited number of the segments 
used for strain calculation, 100 evenly sampled points in each slice are used to 
calculate the mechanical dyssynchrony, which could obtain all the regional 
information of muscle motion and deformation adequately.  

Besides the FT-CMR method, many other methods had been proposed for 
measuring the mechanical dyssynchrony in CRT in the 1990s [12-15]. However, 
none of them could measure the mechanical dyssynchorony occurred in the 
ventricle accurately as reported in [13-15]. In recent years,  the demand for 
measuring the mechanical dyssynchrony has been increasing significantly. It has 
been widely recognized that the mechanical dyssynchorony occurred in the 
ventricle has become a major predictor for the CRT. To address this critical problem, 
we have proposed a new approach to measure the mechanical dyssynchorony 
occurred in the left ventricle [16]. However, the proposed approach could not 
measure the mechanical dyssynchorony occurred in the right ventricle robustly. In 
this paper, we aim to propose a more robust approach to measure the mechanical 
dyssynchorony occurred in both the left ventricle and the right venticle accurately.  

2. The Proposed Approach 

During each systolic and diastolic cardiac cycle, the heart contracts and expands 
periodically. For a normal heart, all the cardiac muscles contract and expand 
synchronously with the cardiac cycle. When some cardiac muscles do not contract 
and expand synchronously with the cardiac cycle, the mechanical dyssynchrony 
occurs. The proposed approach samples hundreds of points uniformly on the 
cardiac muschles to measure the mechanical dyssynchrony while FT-CMR divide 
the whole cardiac muschles into 13 regions and measure the mechanical 
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dyssynchrony of these regions. Thus the proposed approach could measure the 
mechanical dyssynchrony more thoroughly and accurately than FT-CMR.  

 
Fig.1. Flowchart of the proposed approach. 

Fig. 1 shows the proposed approach’s flowchart. M slices of the tested cases are 
selected to calculate the mechanical dyssynchrony between the motion of M×100 
sampled points and the variation of the ventricular volume. The M slices are 
segmented by the ventricle segmentation method automatically. M×N boundaries of 
the ventricle from the M×N frames are obtained. From the obtained boundaries, the 
center of the ventricle and the area of the ventricle are computed. Based on the 
number of the frames contained in each slice, N areas of the ventricle in different 
frames are calculated and normalized. The center of the ventricle is dilated to form 
an inner boundary. The largest obtained boundary by ventricle segmentation is 
dilated to form the outer boundary. The tangent field between the outer boundary 
and the inner boundary is calculated. In each slice, 100 correspondence trajectories 
originate from the ventricle’s center and stop at the sampled points on the outer 
ventricular boundary along the direction of the tangent filed. The intersections 
between the 100 correspondence trajectories and the N obtained boundaries by 
segmentation are calculated for each slice and M×100 distances from the 
intersections to the center of the ventricle are obtained. A Fast Fourier 
Transformation (FFT) based low pass filter is used to remove the outliers that might 
be caused by flaws of the CMR imaging technique, the acquired image or image 
processing algorithms. The M×100 distances from the intersections to the center of 
the ventricle in the N frames of the tested case form a cycle. The normalized areas 
in the N frames of the tested case also form a cycle. The lag time between these two 
cycles are calculated by cross correlation and defined as mechanical dyssynchrony. 
When there is the intra-ventricular mechanical dyssynchrony occurring at one 
sampled point, a lag relative to the reference time occurs. Accordingly, the 
mechanical dyssynchrony is computed as the lag. The calculated lag is normalized 
in the range of [0,  1].  A threshold is determined on-line or off-line to distinguish 
the patient cases from the normal controls. The threshold is selected as 0.3 because 
even for the normal controls, it is rare for all sampled points of the ventricular wall 
to contract at the same rate strictly.  

2.1. Ventricle Segmentation 

The flowchart of the ventricle segmentation method [17-18] is shown in Fig. 2. 
Firstly, the slope difference distribution (SDD) of the LV ROI or the RV ROI is 
computed. The peaks and valleys of SDD are determined.  Based on the positions 
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and magnitudes of the peaks, the means of three pixel classes corresponding to the 
bright blood pools, the grey myocardium and the dark surrounding structures are 
computed as described in [17]. The threshold selection process is divided into two 
situations and is summarized as Algorithm 1. With the optimal threshold, the LV 
ROI or the RV ROI is segmented. The morphology operations are used to select the 
blob with the largest area from the segmentation result as the LV segment or the RV 
segment. The LV segment is transformed to a convex hull while the RV segment is 
smoothed by morphology operations during the post-processing stage. Then, the 
boundary of the LV segment or the RV segment is extracted and filtered. The filtered 
LV boundary or RV boundary is used for mechanical dyssynchrony measurement.  

 
Fig.2. Flowchart of the automatic ventricle segmentation method. 

Algorithm 1 SDD threshold selection 
Input: The valleys of slope difference distribution Vi; i=1,2,…,NV and the peaks of 
slope difference distribution Pj; j=1,2,…,NP . 

Output: The selected threshold T 
Threshold selection: 
1), Compute the center of the dark pixel class u1, compute center of the grey pixel 
class u2 and compute the center of the bright pixel class u3.  
2) ,   Compute the gray-scale values that the valleys of SDD correspond to by the 
following Equation: 
Gx

V={x|S(x)=Vx}, x =1,2,…,NV 
Situation 1: u1 is smaller than or equal to 22 
3),  Compute the number of the gray-scale values of Gx

V between u2 and u3 by the 
following equation:  
X={x| u2<Gx

V < u3 }, x =1,2,…,NV 
4), If the size of X is null, the threshold is computed as:  
T=( u2+ u3)/2 
5), If the size of X is equal or smaller than 2, the threshold is computed as: 

T=min( [Gmin(x)
V ,G  max(x)

V]) 
6), If the size of X is greater than 2, the threshold is computed as:  
T= GxT

V , xT={x| Vx =max(Vx)} 
Situation 2: u1 is greater than 22 
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7), Compute the number of the gray-scale values of Gx
V between u1 and u2 by the 

following equation:  
X={x| u1<Gx

V < u2}, x =1,2,…,NV 
8),The threshold is computed as:  
T= GxT

V , xT={x| Vx =max(Vx)} 
Result: the selected threshold T . 

Fig. 3 demonstrates the LV segmentation process based on the automatically 
localized LV ROI and Fig. 4 demonstrates the RV segmentation process based on the 
automatically localized RV ROI. As can be seen, both the LV and the RV are 
segmented robustly. 

In recent years, deep learning has achieved great success in object classification and 
semantic image segmentation [19-32]. However, deep learning could only generate 
a prediction map of the target instead of the accurate boundary of the target. To 
measure the mechanical dyssynchrony robustly, the boundaries of the ventricles 
must be segmented accurately. Consequently, the deep learning based image 
segmentation methods are not suitable for segmenting the LV and the RV in this 
study. In addition, the SDD based ventricle segmentation method does not require 
any training sets and thus it is more efficient for clinical usage.  

  
(a)                           (b) 

  
(c)                          (d) 

Fig.3. Demonstration of segmenting the LV in the LV ROI. (a) The LV ROI; (b) 
The threshold selection process for the LV ROI; (c) The segmentation result of LV 
ROI; (d) The identified LV boundary. 
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(a)                         (b) 

  
(c)                      (d) 

Fig.4. Demonstration of segmenting the RV in the RV ROI. (a) The RV ROI; (b) 
The threshold selection process for the RV ROI; (c) The segmentation result of RV 
ROI; (d) The identified RV boundary. 

2.2. Mechanical Dyssnychrony Computation 

The flowchart of the intra-ventricular mechanical dyssynchrony measurement 
method is shown in Fig. 5. M  middle slices in a tested case are used to generate 
M N× boundaries by the automatic SDD ventricle segmentation method. From the 
M×N boundaries, N normalized areas are computed. Then tangent field in the 
largest ventricle boundary of each selected slice is computed and M×100 boundaries 
(trajectories) are generated.  The intersections between M×100 trajectories and the 
M×N ventricle boundaries are computed to obtain M×N×100 intersection points. In 
each slice, the distances between these N×100 intersection points and the centroid 
of the ventricle in this slice are computed. Accordingly, a total of M×N×100 
distances are obtained for all the M slices. These M×N×100 distances are filtered by 
a FFT filter with the bandwidth 2 and then their cross correlations with the 
previously computed N normalized areas are computed. The weighted 
dyssynchrony level (WDL) is generated by cross correlation and it is compared 
with a predefined threshold to determine if the tested case is a normal control or a 
patient.  
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Fig.5. Flowchart of the automatic intra-ventricular mechanical dyssynchrony 
measurement method. 

Fig. 6 demonstrates the process of measuring the intra-ventricular mechanical 
dyssynchrony. As can be seen, the WDL of the LV is significantly lower than the 
WDL of the RV in the same tested case.  

 
(a)                             (b) 

 
(c)                            (d) 

Fig.6. Demonstration of measuring the mechanical dyssynchrony. (a) The extracted 
20 boundaries of the LV denoted in yellow lines and the 100 trajectories denoted in 
red lines; (b) The weighted dyssynchrony level computed with four adjacent center 
slices of LV; (c) The extracted 20 boundaries of the RV denoted in yellow lines and 
the 100 trajectories denoted in red lines; (d) The weighted dyssynchrony level 
computed with four adjacent center slices of RV. 
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2.3. The Proposed Registration Based Mechanical Dyssynchrony 
Measurement Method 

As stated in the conclusion section of [13], the torsion and displacement of the 
ventricle might decrease the mechanical dyssynchrony measurement accuracy and a 
registration method might  be able to solve the problem. Hence, we propose a 
registration method to align the ventricles in different frames and calculate the 
mechanical dyssynchrony based on the boundaries of the aligned ventricles. The 
flowchart of the proposed registration method is shown in Fig. 7. The centroids 
( ), , 1, 2,...,i i

c cx y i N= of all the boundaries are computed by Eq. (6). The angle

, 1, 2,...,i i Nθ =  of each boundary is computed as the angle of the long axis of this 
boundary. The differences between the centroid of the largest boundary and the 
centroids of other boundaries are computed as: 

( ) ( ), , , 1, 2,...,i L i L
i i c c c cx y x x y y i N∆ ∆ = − − =           (1) 

The differences between the angles of the largest boundary and the angle of other 
boundaries are computed as: 

, 1, 2,...,i i L i Nθ θ θ∆ = − =                  (2) 

The points ( ), , 1, 2,...,i i
j jx y j J=  on the ith boundary are transformed by the 

following registration matrix.  
cos sin
sin cos

i i
i i ij j

i i
i i ij j

xX x
yY y

θ θ
θ θ

   ∆ ∆ ∆   
= +      − ∆ ∆ ∆                   

(3) 

where ( ), , 1, 2,...,i i
j jX Y j J=  dnotes the point on the ith registrated boundary 

and J  is the total number of the points on this boundary.  

 
Fig.7. Flowchart of the proposed automatic registration method. 

The M×N boundaries used for dyssynchrony measurement are replaced with the 
M×N registered boundaries. The mechanical dyssynchrony is measured again 
according to the flowchart shown in Fig. 5. Fig. 8 shows the measured mechanical 
dyssynchrony ater registration for comparison with the measured mechanical 
dyssynchrony shown in Fig. 6 without registration. As can be seen, the registration 
reduces the WDL significantly. 
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(a)                           (b) 

 
(c)                         (d) 

Fig.8. Demonstration of measuring the mechanical dyssynchrony after ventricle 
registration. (a) The extracted 20 boundaries of the LV denoted in yellow lines and 
the 100 trajectories denoted in red lines; (b) The weighted dyssynchrony level 
computed with four adjacent center slices of LV; (c) The extracted 20 boundaries of 
the RV denoted in yellow lines and the 100 trajectories denoted in red lines; (d) The 
weighted dyssynchrony level computed with four adjacent center slices of RV. 

3. Results 

Twenty cases of CMR images were obtained from 20 patients with heart failure and 
20 cases of CMR images were obtained from 20 healthy volunteers without history 
of cardiac disease with a 1.5T Philips Intera scanner. The steady-state free 
procession (SSFP) short-axis cine images were acquired during 10-15 second 
breath-holds using a 5-element phased array cardiac coil. Contiguous 8-10mm 
slices were acquired at 20 or 30 frames per cardiac cycle. Acquisition parameters 
were as follows: acquired matrix size = 192 × 256, reconstructed matrix size = 
256 × 256, field of view (FOV) = 370 mm, flip angle = 650, TR = 4 msec and TE 
= 2 msec. 

For the ventricle segmentation method, there are two parameters, the bandwidth of 
the DFT low-pass filter W and the fitting number N need to be tuned for optimal 
segmentation. We use the open accessible dataset from [17] to determine the 
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optimal SDD parameters by sensitivity analysis. Both the determined optimal 
bandwidth W and the determined optimal fitting number N equal 11. 

 

(a) 

 

(b) 

Fig.9. The measured mechanical dyssynchrony of the LV for 20 normal controls 
and 20 patients (a) The mechanical dyssynchrony is measured without ventricle 
registration; (b) The mechanical dyssynchrony is measured with ventricle 
registration. 

We measure the mechanical dyssynchrony of both the LV and the RV for the 20 
patients and 20 normal controls. The measured mechanical dyssynchrony is 
computed as WDL values and they are shown in Fig. 9 for the LV and in Fig. 10 for 
the RV respectively. In Fig. 9 (a), the WDL values of the LV are computed by the 
mechanical dyssynchrony measurement method without registration. In Fig. 9 (b), 
the WDL values of the LV are computed by the mechanical dyssynchrony 
measurement method with registration. As can be seen, the normal controls and the 
patients could be differentiated robustly with 100% accuracy by the computed 
WDL values no matter the ventricle is registered or not. After ventricle registration, 
the WDL values of the normal controls are close to zero, which is more accurate. 
The WDL values of the RV computed by the mechanical dyssynchrony 
measurement method without registration for the 40 tested cases are shown in Fig. 
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10 (a) and the WDL values of the RV computed by the mechanical dyssynchrony 
measurement method with registration for the 40 tested cases are shown in Fig. 10 
(b). As can be seen, the normal controls and the patients could not be differentiated 
with 100% accuracy. However, the ventricle registration helps to improve the 
accuracy of the mechanical dyssynchrony measurement approach from 90% to 95%. 
With 100% LV diagnosis accuracy and 95% diagnosis accuracy, the proposed 
approach is able to help CRT and other clinical applications of heart failure 
evaluations positively. 

 

(a) 

 

(b) 

Fig.10. The measured mechanical dyssynchrony of the RV for 20 normal controls 
and 20 patients (a) The mechanical dyssynchrony is measured without ventricle 
registration; (b) The mechanical dyssynchrony is measured with ventricle 
registration. 

Fig. 11 compares the results of computing the mechanical dyssynchrony for the LV 
of a normal control by the method proposed in [16] and by the approach proposed 
in this paper. Fig. 11 (a) shows the computed correspondence trajectories and the 
identified boundaries for one middle slice of the normal control by the method 
proposed in [16]. Fig. 11 (b) shows the cycles of the filtered distances that are 
computed from the intersections of the identified boundaries and correspondence 
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trajectories by the method proposed in [16]. Fig. 11 (c) shows the cycle of the 20 
areas computed from the 20 identified boundaries shown in Fig. 11 (a). Fig. 11 (d) 
shows the computed mechanical dyssynchrony from four middle slices of the 
normal control by the method proposed in [16]. Fig. 11 (e) shows the computed 
correspondence trajectories and the identified boundaries for one middle slice of the 
normal control by the proposed approach. Fig. 11 (f) shows the cycles of the filtered 
distances that are computed from the intersections of the identified boundaries and 
correspondence trajectories by the proposed approach. Fig. 11 (g) shows the cycle 
of the 20 areas computed from the 20 identified boundaries shown in Fig. 11 (e). 
Fig. 11 (h) shows the computed mechanical dyssynchrony from four middle slices 
of the normal control by the proposed approach. Compared to the mechanical 
dyssynchrony measured by the method proposed in [16], the mechanical 
dyssynchrony measured by the proposed approach is more accurate.  

We compare the results of computing the mechanical dyssynchrony for the LV of a 
patient case by the method proposed in [16] and by the proposed approach in Fig. 
12. It is seen that the proposed approach is more accurate than the method proposed 
in [16]. We also compare the results of computing the mechanical dyssynchrony for 
the RV of a normal control and the RV of a patient case by the method in [16] and 
by the proposed approach in Fig. 13 and Fig. 14 respectively. As can be seen, the 
proposed approach is more accurate. 

 

(a)                              (b) 

 

 (c)                              (d) 
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(e)                        (f) 

 

(g)                           (h) 

Fig.11. Comparison of the results of computing the mechanical dyssynchrony for 
the LV in a typical normal control by the method of [16] and by the proposed 
approach (a) the computed correspondence trajectories and the identified 
boundaries for one middle slice by the method of [16]; (b) the cycles of the filtered 
distances by the method of [16]; (c) the cycle of the 20 areas by the method of [16]; 
(d) the mechanical dyssynchrony computed from four middle slices by the method 
of [16]; (e) the computed correspondence trajectories and the identified boundaries 
for one middle slice by the proposed approach; (f) the cycles of the filtered 
distances by the proposed approach; (g) the cycle of the 20 areas by the proposed 
approach; (h) the mechanical dyssynchrony computed from four middle slices by 
the proposed approach. 

 

(a)                              (b) 
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(c)                              (d) 

 

(e)                              (f) 

 

(g)                              (h) 

Fig.12. Comparison of the results of computing the mechanical dyssynchrony for 
the LV in a typical patient case by the method of [16] and by the proposed approach 
(a) the computed correspondence trajectories and the identified boundaries for one 
middle slice by the method of [16]; (b) the cycles of the filtered distances by the 
method of [16]; (c) the cycle of the 20 areas by the method of [16]; (d) the 
mechanical dyssynchrony computed from four middle slices by the method of [16]; 
(e) the computed correspondence trajectories and the identified boundaries for one 
middle slice by the proposed approach; (f) the cycles of the filtered distances by the 
proposed approach; (g) the cycle of the 20 areas by the proposed approach; (h) the 
mechanical dyssynchrony computed from four middle slices by the proposed 
approach. 
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(a)                              (b) 

 

(c)                              (d) 

 

(e)                              (f) 

 

(g)                              (h) 
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Fig.13. Comparison of the results of computing the mechanical dyssynchrony for 
the RV in a typical normal control by the method of [16] and by the proposed 
approach (a) the computed correspondence trajectories and the identified 
boundaries for one middle slice by the method of [16]; (b) the cycles of the filtered 
distances by the method of [16]; (c) the cycle of the 20 areas by the method of [16]; 
(d) the mechanical dyssynchrony computed from four middle slices by the method 
of [16]; (e) the computed correspondence trajectories and the identified boundaries 
for one middle slice by the proposed approach; (f) the cycles of the filtered 
distances by the proposed approach; (g) the cycle of the 20 areas by the proposed 
approach; (h) the mechanical dyssynchrony computed from four middle slices by 
the proposed approach. 

 

(a)                              (b) 

 

(c)                              (d) 

 

(e)                              (f) 
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(g)                              (h) 

Fig.14. Comparison of the results of computing the mechanical dyssynchrony for 
the RV in a typical patient case by the method of [16] and by the proposed approach 
(a) the computed correspondence trajectories and the identified boundaries for one 
middle slice by the method of [16]; (b) the cycles of the filtered distances by the 
method of [16]; (c) the cycle of the 20 areas by the method of [16]; (d) the 
mechanical dyssynchrony computed from four middle slices by the method of [16]; 
(e) the computed correspondence trajectories and the identified boundaries for one 
middle slice by the proposed approach; (f) the cycles of the filtered distances by the 
proposed approach; (g) the cycle of the 20 areas by the proposed approach; (h) the 
mechanical dyssynchrony computed from four middle slices by the proposed 
approach. 

4. Discussion 

Myocardial strain measurement by FT-CMR has become very popular in recent 
years. However, the measurement results are significantly diverse depending on the 
technique and the software used [1,7]. It also requires great effort to determine the 
normal range of the calculated strain for each software before it could be used 
clinically. Most importantly, the strains are computed based on a limited number of 
pre-defined segments,which lacks regional information about the motion and 
defortion of the ventricle. In this paper, a new approach is proposed to measure the 
mechanical dyssynchrony based on a great number of sampled points. As a result, it 
could yield both the global and the regional information about the motion and 
deformation of the ventricle. Based the experimental results of the LV, the normal 
controls could be distinguished straightforwardly from the patients. No additional 
efforts are required to determine a normal range for the proposed approach as 
required by strain based methods [6,7]. 

Although the proposed approach did not achieve the same 100% auto-diagnosis 
accuracy rate in RV as it did in measuring the mechanical dyssynchrony for the LV, 
the incorporation of image registration to rectify the effect of heart torsion and 
displacement will increase the auto-diagnosis rate for the RV significantly. 

5. Conclusion 

In this paper, a fully automatic approach is proposed to measure the mechanical 
dynssynchrony of both the LV and the RV. The fully automatic SDD segmentation 
method is used to segment both the LV and the RV robustly. A fully automatic 
ventricle registration method is proposed to align the boundaries of the ventricle 
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robustly. Finally, the intra-ventricular mechanical dyssynchrony of both the LV and 
the RV are measured robustly and automatically. All the methods are tested with 20 
normal controls and 20 patients and experimental results verified the robustness of 
the all the methods. 
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