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Abstract

Macular holes are a blinding condition that occur due to overuse of the fovea, in which a
hole alters the natural retinal structure. Optical Coherence Tomography (OCT) is a way of
mapping and shaping retinal sections without physical contact and has become a powerful
tool for diagnosing pathologies. This paper deals with a review of automated segmentation
of macular holes in OCT images, detailing its varied possibilities. It may be considered
something new, no reviews were made about the topic. The purpose of this review is to
show the latest trends, through the approaches in preprocessing and segmentation. Recent
studies were used to validate the research, 2011 onwards, from the Science Direct, IEEE,
PubMed and Google scholar bases. The objectives, methodology, tools, database,
advantages, disadvantages, validation metrics and results of the selected material are
analyzed and mentioned. Based on this, techniques and their results are compared. From
this, future outlook scenarios of automated segmentation of macular holes in OCT images
are mentioned.
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1. Introduction

In the central region of the retina is the macula, and the fovea is near its center. This
system allows detailed view [1]. Some macular pathologies are central serous retinopathy
(CSR), age-related macular degeneration (AMD) and macular edema (ME) [2—4]. A distinct
macular disease less commonly observed is called macular hole (MH) [5]. Macular holes
are blinding conditions, that occur due to overuse of the fovea, in which a hole alters the
natural retinal structure [6]. The MH pathology affects about 1 per 500 patients over 40
years [7], and for those over 55 years the number rises to 1.65 per 500 patients [8]. Medical
advances make people live longer and this caused an increase number in retinal deseases
[9, 10].
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The main effects due this pathology is the vision reduction or even total blindness [11].
It can cause negative impacts on the quality of life because the limitations of vision. The
treatment or a possible surgery depends of the size and shape of the MH. Other important
variables are volume, areas, diameters and height. These measures are important to assess
if it is possible the hole closure [12—-14]. The identification of MH in OCT images can be
made through the top boundaries of the internal limiting membrane (ILM) and the retinal
pigment epithelium (RPE) [15-17]. In Figure 1 is shown some important measures to
analysis this pathology. MH can be full-thickness holes (FH) and pseudoholes (PH) [18].
For each situation, there is a different way of treating it [19]. The MH size is the major
risk factor in case of complications in surgery [20], and it determine the approach, if just
a treatment with enzymatic vitreolysis or surgery [21, 22]. Surgeries has achieved good
results in visual restoration of patients [23-25].

ILM boundary
Macular hole
Volume White

Base area Orange
Base diameter Pink

Top area Yellow
Top diameter
Minimum diameter |Light Blue

Height Grey

Figure 1. Some measures of MH pathology. Adapted from [26] and [27].

The OCT is a way of mapping and shaping retinal sections without physical contact and
has become a powerful tool for diagnosing pathologies [28-30]. OCT provides high quality
retinal images. It was first introduced in 1991 [31-33], but it appeared commercially only
in 1996 [34]. Now it is standard for medical retinal analysis [35]. Various A scans (1D)
build the B scan (2D) image [36], and an aggregation of B-scans constructs a 3D structure
[37-39]. These images can have speckle noise, that is a leading problem [40-42], becoming
hard to find out how to segment and trace boundaries without this issue compromise the
results [43—45]. Shadows caused by retinal blood vessels and some pathologies on retinal
structures can challenge even more the segmentation, therefore problems related to a wrong
contour are more likely to occur [46, 47].

There are two ways to remove stains on OCT: parallel method, it preserves the resolution,
improves contrast, but changes physical structure [48—50]; and serial method, it preserves
the physical structure, but is more time cost [51, 52]. Cirrus HD-OCT, 3D-OCT 100 and
2000, RS-3000, Stratus OCT, DRI OCT-1 and Spectralis OCT are some examples of SD-
OCT devices [53, 54]. The images of OCT devices are better than those from ultrasound
or magnetic-resonance imaging [55]. These images are needful before any conclusion for
surgery [56-58], because they provide base to study the development of retinal diseases
[59, 60]. There are advantages using OCT: image acquisition quickly [61], great sensitivity
to very low light [62] and high resolution for millimeter structures [63].

The OCT devices have their own manual segmentation application [64]. Manual
segmentation of boundary layers in OCT images is essentially made by experts. This
method takes a considerable time and becomes disadvantageous in studies of segmentation
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and classification [65-69]. Manual segmentation is yet the major technique of segmentation
due the lack of trustworthy automated methods [70]. Thus, a fast and low cost segmentation
technique is interesting to help these experts with the retina layers analysis. Automatic
segmentation and diagnosis of pathologies using OCT is not an easy task, more than one
pathology may affects negatively the results. For the same pathology may exist different
characteristics. The MH is one example. The guaranty of an identical comparison between
regions is not possible in some studies that use more than one device [71, 72].

Despite the challenges encountered in segmentation techniques of MH pathology, the
motivation to produce this review is the importance of automated methods to segment OCT
images and help the specialists. Besides that, the advances in research involving this theme
can contribute to the total acceptance to use this technology in medical practices. This work
may be a source of study for researchers, clinicians and engineers wishing to delve into
MH segmentation techniques. They are together seeking improvements in retinal image
analysis [73, 74]. Different parameters acquired by OCT images contribute with patient
diagnosis and with academic researches [75, 76]. Computer-aided diagnosis systems (CAD)
may help health professionals making conclusions because they provide information beyond
the images [77-79].

A limited amount of researches has been made in this field of study. Therefore, this
review can contribute to spread more researches and approaches on segmentation of MH.
The main objective of this article is to analyze the latest technologies used for segment MH
in OCT images, through the approaches in preprocessing, segmentation and extraction of
attributes. Some approaches were performed in order to automatic segment macular holes
from OCT scans. As the MH varies according to its size and shape, automatic segmentation
becomes more difficult.

A review of these techniques may be considered something new, no reviews were made
about the topic. The survey is timely mainly due the recent increase of publications in the
field. It is possible to find more works being produced from 2018 to nowadays than in
other years. New technology trends, such as machine learning and deep learning have been
sprayed in the last three years, as examples: [80], [81] and [82]. This work details the tasks
to segment MH and argues the techniques step by step. For each identified approach, the
database, the method and the results are discussed.

Automatic segmentation, specifically of MH, are limited in a small quantity of 6 works
and there is no review yet in this area. In order to go deeper, this review proposes to examine
the main techniques of other works that uses similar techniques to segment other macular
pathologies. The principles are the same and they can be applied in MH, segmenting
boundary layers from OCT images in order to obtain specific characteristics for certain
macular diseases. The review of pulmonary nodule detection made by Valente [83] served
as a source of inspiration and learning for this review. As the work of [83], this review seeks
to find the best techniques to help with medical imaging diagnostics.

The review is divided into: Section 2 describes the datasets and research methods used
in this work. Section 3 details the assessment of CV systems. Section 4 discusses the
results, the key words more commonly used and analysis of the works that best match the
research. Section 5 is the Discussion section, where an analysis about the advantages and
disadvantages of the relevant works is made. Lastly, Section 6, the Conclusion section,
summaries the results of this review.

2. Work selection criteria

To develop this review, some steps were necessary: (1) to carry out research of the subject
from the Science Direct, IEEE, PubMed and Google scholar bases; (2) choose the works
based on the adopted method; (3) synthesize the keywords, in order to ensure relevant
research; and (4) evaluate each selected work.

The following logical expression used in the bases was: (segmentation OR classification
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OR detection OR ”macular holes” OR MH) AND (”optical coherence tomography” OR
OCT). Each base has its own search settings that require adaptation. The search went beyond
the expression used, utilizing relevant works found in the references of some studied papers.
It was obtained a total of 128 works. From these papers, 32 were chosen to be studied.
Each work was checked aim at divide them with respect to their application: automated
segmentation of MH from OCT images (6 articles); automated segmentation of boundary
layers with other pathologies in OCT images, similar approach from MH segmentation (21
articles); and segmentation approaches in classification of macular pathologies, correlated
works which describe segmentation techniques before the classification step (5 articles).
Although only 6 articles are directly linked to segmentation of MH, the other works were
supportive because their techniques can be transmitted to macular holes analysis.

3. Computer Vision systems

Diagnosis using medical images are popular trustworthy. Millions of images are produced
by hospitals each year. They come from different sources like magnetic, tomography, or
ultrasound. These data have features that can allow specialists diagnose pathologies [84].
The CV obtains information through image analysis. To process it, first is required to convert
it into a digital image (pixels), which may vary in grayscale or mix of primary colors [85].

Computer vision ensures visual information for a given application. It is a branch of
artificial intelligence (AI). Automated systems can take information of data and perform
some tasks [86]. This technology is improving several areas: medicine, industry, science,
military force etc [87]. There are some levels of vision: low-level vision, gathering and
processing of images; intermediate-level vision, segmentation and classification; and high-
level vision, Al that generates results [88]. The CV has four phases: acquisition of data,
preprocessing, segmentation and classification. Theses phases of the selected works are
shown in Table 1.

3.1. Acquisition of data

Data is acquired by images from the OCT technique. Images of public databases are used for
researches in different applications. Through these databases, researchers can make studies
and comparisons between similar works [89]. From this review, most of the works used
particular database only or together with some public ones. Other works did not mention
the used database.

Some public databases from OCT images are: Duke dataset [90], OCT Retinal IMage
Analysis 3D (OCTRIMA-3D) database [91], Mendeley Dataset [92] and Noor Eye Hospital
in Tehran database [93, 94]. These databases include the following conditions: normal
macula (NM), diabetic macular edema (DME), dry age-related macular degeneration (AMD),
choroidal neovascularization (CNV) and Drusen. For the specific case of MH, all of the 6
directly related works utilize particular databases. It was found just one publicly database
with MH pathology in OCT scans: Optical Coherence Tomography Image Retinal Database
(OCTID) [95].

The Duke database is a publicly available database of Individual spectral domain SD-
OCT images with 38400 B-scans with AMD and NM. This database contains their ages,
and their corresponding segmentation boundaries on a Smm diameter centered at the fovea
[90]. OCTRIMA-3D dataset is a publicly database that has 10 SD-OCT volume. There are
raw images, manual markings of two experts and results. Speckle noise was reduced and
contrast enhancement was made in these images [91, 114].

The Mendeley Dataset has data to train and test algorithms. The images are mixed
in four conditions: CNV, DME, Drusen, and NM. This dataset has 5.8 Gigabyte of OCT
images [92]. The Reza Rasti database is another publicly available database. It consists of
NM, AMD and DME conditions. There are around 512 to 768 A-scans that together make
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Table 1. CV phases of the selected works.

Authors Year Preprocessing Segmentation Classification
Nasrulloh et al. [11] 2018 Yes Yes No
Keller et al. [26] 2016 Yes Yes No
Miri et al. [96] 2016 Yes Yes No
Zhang et al. [5] 2015 Yes Yes No
Xu et al. [27] 2013 Yes Yes No
Liu et al. [19] 2011 Yes Yes Yes
Duan et al. [43] 2017 Yes Yes No
Sui et al. [28] 2017 No Yes No
Hu et al. [65] 2019 Yes Yes No
Hussain et al. [97] 2015 Yes Yes No
ElTanboly et al. [98] 2016 Yes Yes No
Hussain et al. [99] 2017 Yes Yes No
Chiu et al. [100] 2012 Yes Yes No
Novosel et al. [101] 2017 Yes Yes No
Naz et al. [102] 2017 Yes Yes No
Xiang et al. [103] 2019 Yes Yes No
Hassan et al. [104] 2018 Yes Yes No
Gonzdlez-Lépez et al. [105] 2019 Yes Yes No
Stankiewicz et al. [106] 2017 Yes Yes No
Athira et al. [107] 2018 Yes Yes No
Gopinath et al. [108] 2017 No Yes No
Dodo et al. [109] 2019 Yes Yes No
Duan et al. [110] 2015 Yes Yes No
Langetal. [111] 2017 Yes Yes No
Niu et al. [112] 2014 Yes Yes No
Rossant et al. [113] 2015 Yes Yes No
Tian et al. [114] 2015 Yes Yes No
Huang et al. [80] 2019 No Yes Yes
Nath et al. [82] 2018 Yes Yes Yes
Hassan and Hassan [81] 2019 Yes Yes Yes
Hassan et al. [1] 2016 Yes Yes Yes
Fang et al. [115] 2017 Yes Yes Yes

the B-scans [93, 94]. The OCTID was the only publicly available database found with only
cases of macular holes pathology [95]. This dataset has 102 B-scan OCT images. There
is no ground-truth or any manual segmentation made by experts to make comparisons and
validate algorithms.

3.2. Preprocessing

Preprocessing image techniques for this review are performed in order to improve their
characteristics based on the type of application to the next step, which is the segmentation
of a subject in a particular region of interest (ROI). This stage is important due OCT images
eventually contain inhomogeneity, speckle noise and shadows caused by retinal blood
vessels [116].

The review indicates many types of preprocessing techniques: dilation and erosion
[5], median filter [27, 107, 111], gaussian filter [11, 100, 101], wiener filter [11, 81, 99],
binary image [26, 100], gradient image [26, 114], anisotropic difusion filter [5, 97, 99],
image aligment [19, 98, 103], attenuation coefficient [101], enhanced contrast [1, 105],
image flattenig [106, 114], resize the image [1, 107], edge flow [112], sparse filter [112],
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normalization [81], green channel [81], greyscale [1], morphological operations [1] and
others. In Figure 2 is shown the improvements of preprocessing applied to OCT image.

(b)
Figure 2. (a) Original OCT image and (b) denoise using the Wiener filter [11].

3.3. Segmentation

Segmentation is a fundamental branch of CV system that collaborates to the automated
diagnosis of MH and other pathologies. In the case of MH, this task is challenging because
the top boundary of the ILM is irregular and nonlinear. It is not coincidence that there are
few works that explore the segmentation or classification for this pathology. Some metrics
can be used to validate an algorithm: accuracy, processing time and error variation.

Some segmentation techniques applied to OCT images are: snakes or active contour, it
is a method used to circumvent objects in an image [105]; graph search, this technique starts
from a starting point to an ending point, repeating the process, trying to find the best path
[5, 26, 27]; Dijkstra shortest path search, it is an algorithm that seeks to find the shortest path
between two nodes [26, 99, 107]; local gaussian distribution fitting (LGDF), local entropy
defines gray level weights [11]; curvature-based surface cutting, it can be flattened into the
plane with low metric distortion [11]; ReLayNet, it is an architecture used to segment retinal
layers [80, 117]; speed-up robust features (SURF), it is a method used in tasks like object
recognition, classification etc [115]; adjusted mean arc length (AMAL), it enables to pass
the load limit and turning points, and consequently to follow the post-critical equilibrium
trajectories [26]; gradient vector flow (GVF), it is an algorithm that locates object edges
[96, 118, 119].

Other techniques are: multi-scale spatial pyramid (MSSP), it captures the geometry
of retina at multiple scales [19]; geodesic distance method (GDM), it can locate pixels in
boundaries of layers [43]; convolutional neural network (CNN), it is pooling, which is a
non-linear down-sampling [28, 108, 120]; dynamic programming (DP), it is a method that
divide problems and solves each one separately [65, 100, 102]; canny edge detection, it is
an algorithm that detects edges [97, 99, 104]; markov gibbs random field (MGRF), it allows
to derive a global texture description by specifying local properties of textures [98]; loosely
coupled level sets (LCLS), it is a technique that uses local intensity variations to segment
layers [101]; structure tensor, it utilizes the gradient of a point with neighborhood to get
directions of segmentation [102, 104]; Randon Forest (RF), that train the data to estimate
boundary probabilities [111, 121, 122]; and OTSU algorithm, it is used to perform automatic
image thresholding [102, 107, 112]. In Figure 3 is shown an example of segmentation
approach applied to an OCT image, in which the top boundary of the ILM and RPE layers
are highlighted. The automatic segmentation methods of MH or similar pathologies are
divided and indicated in Table 2.
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Figure 3. Segmentation of a macular hole [26].

3.4. Classification

Classification is based on information of the observed data. Usually are extracted features
that differentiate some patterns. In the case of classification of pathologies in OCT images,
the previous step, that is the segmentation, is the focus in these articles. Classification
techniques can be performed in segmentation approaches too. Some works in this field
combine image processing with techniques of Al [123—125]. The classification of retinal
pathologies can be seen in many works [126]. Some examples in this review are:
convolutional neural network (CNN) [80], k-nearest neighbour (KNN) [82, 127], suporting
vector machine (SVM) [1, 81], multi-instance multilabel learning (MML-LR) [115] and
adaboost classifier [5]. In Figure 4 is given an illustration of some pathologies classified
based on their boundary layers.

[Drusen

iy,
ra,

(b)

lormal

(c) (d)
Figure 4. Some retinal pathologies [128].

4. Selected Works

Some metrics of validation were observed in the articles for this review and it is important to
understand their meaning, they are: standard deviation (SD), it measures dispersion from the
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Table 2. Automatic segmentation of MH or similar boundaries.

Type of Segmented Segmentation
Ipe Ot boundary Authors gme
segmentation technique(s)
layers
Segmentation LGDEF / Curvature-based
of MH ! Nasrulloh etal. [11] Surface Cutting
1 Keller et al. [26] AMAL / Graph Search /
Dijkstra
1 Miri et al. [96] GVF / Graph Theory
2 Zhang et al. [5] Graph Cut
2 Xu et al. [27] MS-3D Graph Search
NI Liu etal. [19] MSSP
Segmentation
of boundary 9 Duan et al. [43] GDM
layers
2 Sui et al. [28] CNN / Graph Search
5 Hu et al. [65] CNN / Graph Search
. Graph Search / Dijkstra /
3 Hussain et al. [97] Canny Edge
12 ElTanboly et al. [98] MGRF
4 Hussain et al. [99] Dijkstra / Canny Edge
) Dijkstra /
3 Chiu et al. [100] Graph Theory / DP
8 Novosel et al. [101] LCLS
DP / Structure tensor /
8 Naz et al. [102] Canny Edge / OTSU
. RFC / Single Graph Live
11 Xiang et al. [103] Wire Algorithm
Structure tensor /
6 Hassan et al. [104] Canny Edge
4 Gonzalez-Loépez et al. [105]  Snakes or Active Contour
_— Peak Intensity Analysis /
2 Stankiewicz et al. [106] Graph Theory
. Dijkstra Shortest Path /
NI Athira et al. [107] OTSU
8 Gopinath et al. [108] CNN
9 Dodo et al. [109] Level Set Method
12 Duan et al. [110] Region Growing Method
8 Langetal. [111] RFC / Graph Search
. OTSU / Polynomial
6 Niuetal. [112] Fitting Function
8 Rossant et al. [113] Snakes or Active contour
. Graph Search /
8 Tian etal. [114] Dijkstra shortest path
2 Huang et al. [80] ReLayNet
7 Nath et al. [82] LCLS
Tensor Grid / OTSU /
8 Hassan and Hassan [81] Canny Edge
8 Hassan et al. [1] OTSU / Canny Edge
2 Fang et al. [115] SURF
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mean of a dataset; sensitivity, or true positive rate (TPR), or recall, it indicates the amount
of correctly identified actual positives; specificity, or true negative rate (TNR) indicates the
amount of correctly identified actual negatives; accuracy, it indicates how close the values
are measured to a target; signed error (SE), it is a sample statistic that summarizes how well
a set of estimates match the quantities that they are supposed to estimate; unsigned error
(UE), it is the opposite of signed error.

Other important metrics are: jaccard Index, it is used in understanding the similarities
between sample sets; Dice similarity coefficient (DSC), it is a reproducibility validation
metric; operator characteristic curve (AUC) or ROC curve, it evaluates the binary classifier
as its discrimination threshold varies.; average deviation distance (AD) or mean absolute
deviation (MAD), it is the average distance between each data point and the mean; first-
order agreement coefficient (AC1), it is the probability of agreement of evaluators; Pearson
correlation, it indicates how two variables are linearly related; and signal to noise ratio
(SNR), it is a comparison between desired signal and the level of background noise.

During research, many keywords were found. In Figure 5 is shown the most relevant
keywords to this field of study. This section analysis the best works exploring the most
recent and important approaches for automated segmentation in OCT images.

Keywords
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Figure 5. The best and most effective keywords.

Nasrulloh [11] developed a technique to extract measurements from the automated
segmentation of MH. In this technique, after the preprocessing step, the segmentation is
processed by LGDF and Curvature-based Surface Cutting. A total of 30 images of MH
cases were used and the average segmentation performance was of 19.84 seconds per image.
The algorithm had an accuracy of 99.19%, sensitivity of 85.18%, Jaccard Index of 76.34%
and DSC of 86.19%. Keller [26] also created an algorithm to segment MH. The technique
used was AMAL. It was necessary 10 different patients (24 images from each one). The
mean, SD and the time to segment MH with the Dijkstra Shortest Path Search were of 0.043
mm, 0.013 mm, and 0.039 s, respectively.

Miri [96] proposed an algorithm to perform the automatic segmentation of the ILM
boundary within optic nerve head (ONH). The method identified the ILM surface using
a Graph Theory and GVF methods. A total of 44 patients were used. The mean and SD
were of 1.9 &£ 0.475 mm and the Pearson correlation was of 99.94%. Zhang [5] proposed
a technique similar to Miri [96] to segment CME for the retina with MH pathology. The
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coarse segmentation was made by AdaBoost classifier and the fine segmentation used Graph
Cut algorithm. To evaluate the technique, 18 3D OCT volumes with MH and CME were
used. The accuracy of TPR was of 84.5%, FPR was of 1.8% and accuracy rate was of
98.6%.

Xu [27] suggested a method for segmentation of 2D and 3D MH. The segmentation was
performed using Multi-scale 3D Graph Search. A total of 51 eyes contained 128 B-scans
were used. Patients with other diseases were excluded. The accuracy was of 96% and
the mean error between the two experts was of 6.1%. Different from Xu [27], Liu [19]
developed a classification method of multiple macular pathologies, they were NM, ME, MH,
and AMD. The segmentation approach was MSSP. A total of 326 macular SD-OCT scans
were used. The algorithm achieved an AUC of 0.93 for all pathologies.

Sui [28] developed a choroidal segmentation algorithm. The techniques used were deep
multi-scale CNN and Graph Search. A total of 23972 images were necessary. The mean and
SD of absolute error in pixels were of 8.5 & 7.6. Hu [65] sugested a segmentation technique
of multiple retinal layer boundaries using the same techniques as Sui [28]. The method
included 50 OCT images. The UE value in pixels for the mean, max, and SD were of 0.99,
1.13, 0.10, respectively.

Hussain [97] created an automatic method to segment the ILM and the Bruch’s
Membrane Opening (BMO). The techniques used were Canny Edge Detection, Dijkstra
Shortest Path Search and Connected Component Analysis. A total of 18 SD-OCT volumes
were used. The precision was of more than 95%. The UE difference for BMO location and
BMO-MRW were of 54.18 & 53.74 ym and 58.62 &+ 43.12 um (mean + SD), respectively.
Hussain [99] created an automatic method to identify 4 boundaries layers in the presence of
3 pathologies using the same techniques as Hussain [97]. A total of 3 datasets were used
and 2 of them are public. The mean and SD of the root-mean-square error in pixels were of
1.57 + 0.69.

Novosel [101] developed a segmentation method in 3D OCT volumes of retinal layers
and focal lesions. The LCLS framework and Locally Adaptive Likelihood were applied. A
total of 97 B-scans were used. The method achieved TPR of 93% for fluid segmentation,
DSC of 68% and MUE ranging from 4.9 to 8.3 um for drusen segmentation. Stankiewicz
[106] sugested the segmentation of ERM from 3D volumes too. The used techniques were
Peak Intensity Analysis and Graph Theory. A total of 141 B-scans were used. The results
with Pixel Intensity Analysis in MSE and SD were 46.07 and 11.44 ym. The results with
Graph Search technique in MSE and SD were 26.55 and 8.81 ym.

Naz [102] sugested the automatic segmentation of retinal layers using two techniques
and compared using 108 OCT images: Kernel regression + GTDP (mean and SD of 0.004
=+ 0.0001 ym) and Structure tensor (mean and SD of 0.289 £ 0.0659 ym). Hassan [104]
proposed an algorithm to detect fovea in OCT scans. The segmentation of six retina layers
also used Structure Tensor and Canny Edge Detection. The dataset contains 120 OCT
B-scans with three conditions: NM, ME and CSR. The overall accuracy was of 97.5%.

Chiu [100] proposed the segmentation of three retinal boundaries from images with
AMD, RPE and drusen. The segmentation were based on Dijkstra’s Shortest Path Search,
Graph Theory and DP. A total of 100 B-scans were used. The mean and SD were of 4.2
+ 2.8 um. This work was one of the most compared and studied articles by researchers in
this field. Tian [114] created an algorithm called OCTRIMA-3D that segments retinal layer
boundaries of OCT volume. It is based in Dijkstra Shortest Path proposed by Chiu [100].
A total of 10 SD-OCT volume datasets were used. In addition, 100 SD-OCT images were
necessary too. The MSE =+ SSE for the ILM surface were of 0.6 £ 1.14 pixels.

Athira [107] developed a technique to detect ME based on fractal texture analysis.
Layers detection also used Dijkstra Shortest Path Search, and also Sparse Matrix and OTSU
algorithm. A total of 100 normal and 100 ME images were used. The algorithm had an
accuracy of 97.5%, sensitivity of 98.9% and specificity of 98.05%. Dodo [109] created an
algorithm to segment nine layers. Different from the others that used Dijkstra’s Shortest Path
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in segmentation step, in this work it was applied to the preprocessing step. The initialisation
used Fuzzy image processing. The segmentation was made by Level Set methods. A total
of 200 images were used. The mean and SD in pixels were of 0.9643 + 0.014.

Xiang [103] created a method to segment retinas with CSR. The technique used was
RFC and Single Graph Live Wire Algorithm. A total of 48 images with 128 B-scans were
used. The TPF, FPF and DSC in % were of 92.73 £ 15.03, 0.05 £ 0.09 and 92.73 +
14.21, respectively. Lang [111] created a segmentation method for retinal layers in retinitis
pigmentosa (RP). It also used RFC and Graph Search algorithm. A total of 512 A-scans and
B-scans varying from 19 to 49 for each patient were used. The boundary errors in ym over
all subjects were specified in signed error and absolute error of - 0.9 £ 2.65 and 4.22 +
2.44, and the layer thickness errors over all subjects were of - 0.03 &= 3.33 and 5.14 £ 2.69.

Gonzdlez-Lopez [105] developed an automatic segmentation method for retinal boundary
layers. The proposed technique was based on Snakes or Active Contours and it used 40 OCT
images. The overall DSC was of 91.25% and the mean and SD for unsigned boundaries
were of 1.27 £ 1.06 pixels. Rossant [113] sugested a segmentation method of layers for
RP subjects using another approach of snakes, the PDS. The database included 95 images.
Comparisons between the automatic segmentation to manual segmentation and comparisons
of PDS model against Twin Snakes, Ribbon Snakes and Ribbon of Twins (ROT) were made.
The PDS technique leaded to the best results with mean and SD of 1.3 & 0.33 pixels.

Huang [80] proposed a classification method called ReLayNet for four conditions: NM,
DME, drusen, and CNV. Two datasets were used. The first one contains 84484 OCT B-scans
(averaged overall accuracy and SD were of 88.4 and 1.3). The second one contains a total of
8904 (averaged overall accuracy and SD were of 8§9.9 and 0.6). Nath [82] also proposed
a segmentation and classification method to classify pathologies in normal or abnormal
OCT images. The ROI was detected using attenuation coefficients by LCLS. There are
no information about the database. The mean deviation for all interfaces were of 1.9 and
8.5 um. Duan [110] created a technique to segment retinal layers using Region Growing
method. Just as in Nath [82], nothing about the database was mencioned. The results shown
were only qualitative. A visual comparison was made between the proposed method and
other three techniques. It was possible conclude empirically that the proposed method had
the best segmentation.

Niu [112] proposed a technique to segment retinal boundary layers using OTSU
algorithm, Polynomial Fitting Function and Top-hat Filtering. A total of 3200 B-scans were
necessary. The mean and SD in ym were of 0.22 £ 0.24. Hassan [81] developed an
algorithm to classify macular conditions in NM, CSR and ME. Preprocessing and layer
segmentation were necessary. For the segmentation step was also needed OTSU algorithm,
also other methods, such as Tensor Grid and Canny Edge Detection. A total of 90 OCT
volumes were necessary. The accuracy, sensitivity and specificity were of 97.78%, 96.77%
and 100%, respectively.

Gopinath [108] proposed an algorithm using deep learning, CNN and LSTM. Three
datasets were used. For normal cases: dataset of Chiu (110 B-scans) and OCTRIMA3D
(100 B-scans). For pathology cases: Chiu (220 B-scans). The mean and SD in pixels were
of 1.78 £ 0.78 for Chiu-path, 1.16 + 0.46 for Chiu-norm and 0.92 + 0.31 for OCTRIMA-
3D. Hassan [1] also developed a deep learning classification technique for three retinal
conditions: ME, CSR and NM. The segmentation step was performed based on Canny
Edge Detection and OTSU algorithm. The dataset was composed by 90 time domain OCT
(TD-OCT). The accuracy, sensitivity and specificity were of 97.77%, 100% and 93.33%,
respectively. Other work with similar approach was proposed by Fang [115]. It is a detection
and recognition technique of multiple macular lesions: ERM, edema, and drusen in OCT
images with Multi-instance Multilabel Learning. The segmentation of ROIs for different
lesions was performed by SURF. A total of 823 clinically labeled OCT images were used.
The results in % were: accuracy of 88.72 £ 0.84, recall of 91.21 4 0.53 and precision of
92.83 £ 0.74.
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El Tanboly [98] sugested the segmentation of the largest number of retinal layers, twelve,
considering healthy and deseased subjects. The methods used were LCDG and MGRE. A
total of 200 normal and diseased OCT scans were used. The accuracy using DSC, ACI in
%, and AD in um represented as mean and SD were of 0.763 £ 0.1598, 73.2 4+ 4.46 and
6.87 £ 2.78. Besides segment twelve layers, Duan [43] also created an algorithm to detect
3D retinal boundary layers based on GDM. A total of 50 B-scans were used. The mean
and SD of SE were of - 0.11 & 0.22 um, absolute error (AE) were of 1.43 + 0.2 um and
Hausdorff distance (HD) were of 7.3 4= 0.67 um. To compare and divide the articles in this
review, some attributes were used. A total of 32 articles were utilized. The comparison is
shown in Table 3.

Table 3. Comparison between the related works.

Authors Accuracy (%) Mean + SD (mm) Response time
Nasrulloh et al. [11] 99.19 0.9644 + 0.0015 19.84 s/image
Keller et al. [26] NI 0.043 +0.013 0.039 s/image
Miri et al. [96] 99.94 1.9 +£0.475 NI
Zhang et al. [5] 98.6 NI NI
Xuetal. [27] 96 0.061 0.0 38 s/image
Liuetal. [19] 93.1 NI NI
Duan et al. [43] NI 0.0014 + 0.0002 0.415 s/image
Sui et al. [28] NI 8.5 £ 7.6 in pixel 3.4 s/image
Hu et al. [65] NI 0.99 £ 0.1 in pixel 27.5 s/image
Hussain et al. [97] 97.27 0.059 4+ 0.0431 NI
ElTanboly et al. [98] NI 0.0069 + 0.0029 NI
Hussain et al. [99] NI 1.57 + 0.69 in pixel NI
Chiu et al. [100] NI 0.0042 + 0.0028 1.7 s/image
Novosel et al. [101] 89 0.0049 ~ 0.0083 NI
Naz et al. [102] NI 0.004 £ 0.0001 in ym NI
Xiang et al. [103] 92.73 + 14.21 NI NI
Hassan et al. [104] 97.5 NI 5 s/image
Gonzélez-Lépez et al. [105] 91.25 1.27 + 1.06 in pixel NI
Stankiewicz et al. [106] NI 0.0026 + 0.0088 NI
Athira et al. [107] 97.5 NI NI
Gopinath et al. [108] NI 0.92 £ 0.31 in pixel 4 s/volume
Dodo et al. [109] NI 0.96 & 0.01 in pixel NI
Duan et al. [110] NI NI NI
Langetal. [111] NI 0.0042 + 0.0024 NI
Niu et al. [112] 99.96 0.0022 + 0.0024 NI
Rossant et al. [113] 87.4 1.3 £ 0.33 in pixel NI
Tian et al. [114] NI 0.6 £ 0.0 in pixel 26.1 s/volume
Huang et al. [80] 89.9 NI NI
Nath et al. [82] NI 0.0019 +£ 0.0085 NI
Hassan and Hassan [81] 97.78 NI NI
Hassan et al. [1] 97.77 NI 8 s/image
Fang et al. [115] 88.72 NI 0.25 s/image

5. Discussion

The main objective of this review is approach the segmentation techniques of macular holes
in OCT images, however the amount of works in this field is limited. Therefore, some works
involving boundary layers segmentation in OCT images were used. Since the ILM layer is
the most important layer for MH segmentation in OCT images, many of these works use
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techniques to segment it, but for other pathologies. A study of the selected works shows that
many possibilities for segmentation of MH in OCT images are possible. Some approaches
obtained accuracy upper 95%, as examples: [11], [96], [5], [27], [99], [104], [107], [112],
[81] and [1].

Some advantages can be mentioned in the works selected for this review. Liu [19] was
the first study showing satisfactory results in automatic diagnosis in OCT images. It was
important to serve as starting point to other works. Chiu [100] created one of the most
compared and studied articles by researchers in this field. Xu [27] proposed a method
that classify MH in four classes, this is an important step for the surgical aid. Keller [26]
developed a method that can be applied to segment MH and other subjects in medical
images. Zhang [5] created an algorithm that can segment CME excluding MH and blood
vessels. The work of Miri [96] had smaller border errors than the comparative methods.
Nasrulloh [11] developed a technique 61 times faster (2.46 minutes) than the original LGDF
implementation. El Tanboly [98] had the first work segmenting twelve layers with all kinds
of condition.

Duan [43] outperformed the Active Contour and Graph based approaches for segmenting
retinal layers in both healthy and pathological images. Sui [28] developed a deep learning
method which is unique in choroid segmentation. Hu [65] obtained more reliable probability
maps using neural network. Novosel [101] developed an algorithm to segment layers and
lesions. Gonzalez-Lopez [105] created an algorithm tolerant to noisy scenarios. Gopinath
[108] developed a method that not requires any preprocessing step. Duan [110] successfully
segmented the OCT image that contains some broken retinal layers. Tian [114] created an
algorithm that not requires advanced denoising techniques.

Disadvantages can also be mentioned in the proposed works. In the preprocessing phase
of Zhang [5], the delineation of MH was rough and contained failures. In Keller [26],
the algorithm had data to find parameters like MH height and base width, but did not. In
Xu [27], MH edge segmentation errors could be adjusted and patients with other diseases
were excluded. Liu [19] found out that in their algorithm texture features may decrease
effectiveness of the classifier. The work of Sui [28] spends about 10 h for each loop in
training algorithm. Hussain [97] could not give a comparative analysis with other existing
methods, because do not exist public database with segmentation of BMO or BMO-MRW.

Chiu [100] found a tradeoff between functionality and accuracy. Comparisons between
the method of Novosel [101] and others was difficult, because there was no pattern of images
and reference standard. Gonzalez-Lo6pez [105] sugested a model in which a completely
fair comparison with the states-of-the-art seems extremely complicated because they used
more than one dataset, each one with their own setting. Duan [110] created a method in
which there is not quantitative analysis of the results and nothing about the database was
mencioned. Tian [114] developed a methodology that sometimes has problem to segment
the ILM boundary. The review showed that the latest segmentation techniques of MH in
OCT images have not solution for all issues yet, and more research and improvement needs
to be done.

5.1. Future prospects

Further researches are necessary to find out new approaches or improve the existing ones.
A closer relationship between the medical community and the researchers strengthens the
subject. Future prospects can allow the total use of MH segmentation systems in daily
medical practices, they are:
e CV systems with a better accuracy and robustness to speckle noises;
e development of techniques that can automatically measure features of MH and classify
them according with their classes;
e creation of a publicly database of OCT images with MH containing segment and
feature information to help researchers on their works;
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e promoting a closer relationship between the involved parties in the system, such as
engineers, physicians, technicians and government.

6. Learned lessons

Segmentation techniques are fundamental to aid in the diagnosis of medical pathologies.
Researchers are constantly looking for the best segmentation techniques. The advancement
of computing is allowing practices with increasing levels of accuracy. Image preprocessing
is almost always required before applying some segmentation technique, but some deep
learning tools already do not require image preprocessing. Despite the growth of deep
learning techniques, new preprocessing and segmentation techniques are constantly
appearing.

There are some softwares that can be used for CV tasks, but the predominance is the
Matlab and Python as integrated development environment. There are numerous public and
private databases for macular pathologies, but for macular holes there is still no well-defined
database with manual segmentation for comparison porpuse, per example. The number of
experts working on the ground truth of articles can range from one to five. Comparisons for
validation work may use one to eight state-of-the-art. Advantages and disadvantages can be
observed in each work, depending on the technique used. A perfect result for segmentation
of MH or similar pathology has not been found yet. Validation metrics can vary, this will
depend on what kind of parameter you want to focus on.

7. Conclusion

This paper elaborated a review of CV techniques applied to segmentation of macular holes
and similar techniques that can be applied on this pathology. The work used papers published
from the year 2011 to nowadays on Science Direct, IEEE, PubMed and Google scholar
bases, which makes a recent review. Progress has been performed in this field. However,
though the area of diagnostics requires more studies. The issue is important to the scientific
community, due the need of boundary segmentation in other tasks too.

In general, the revised papers show potential for the joining of CV technology with
medical diagnostics. Many challenges still need to be overcome for their full admission in
medical practices. For this, a good partnership between researchers and physicians is needed.
The total acceptance to use this technology in medical practices will only work by joining
forces between health professionals, researchers, government, engineers and partners. Thus,
with these efforts will be possible to spread this technology and make it operational. The
reduction of errors is a requirement for the acceptable use of these technologies.

The best results could be analyzed due to well done research, considering the best
keywords, in well-known scientific bases. This work may be a source of study for researchers
wishing to delve into MH segmentation techniques. This review may serve as a basis for
studies and developments of techniques even more robust than those mentioned here, with
the aim of solving the problems that still exist in automatic MH segmentation.
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