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Abstract 

In the medical field, the analysis and processing of medical images plays an important 
auxiliary role in the diagnosis of diseases. In recent years, more and more researchers 
have begun to pay attention to such processing technologies as pattern recognition, 
classification and segmentation in medical image processing. Cardiovascular disease is 
one of the most important diseases that endanger human health at present. It is very 
meaningful to diagnose and treat cardiovascular disease by means of in-depth learning. 
In order to make deep learning better applied to cardiovascular diseases, this paper first 
outlines the development and causes of cardiovascular diseases, then describes several 
theoretical models of deep learning, and then summarizes the application of deep 
learning in heart image segmentation, classification and other aspects combined with 
existing technologies. Finally, the future direction of development is prospected. 
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1. Introduction 

In recent years, the incidence and mortality of coronary heart disease have increased 
year by year in the world[1]. How to diagnose and prevent coronary heart disease has 
become an important issue of concern. In the lumen of the coronary arteries, due to the 
accumulation of fibrosis and calcification, the lumen is narrowed to produce coronary 
heart disease. The formation of plaque usually takes 15-20 years, and plaque is an 
important part of the thrombus. Acute cardiovascular events are catastrophic, primarily 
due to atherosclerotic (AS) plaque rupture and secondary thrombosis. Before the AS 
plaque ruptures, the AS will have a long period of quiet silence. This has led to 
difficulties in early screening of high-risk populations and may lead to unnecessary 
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over-screening of low-risk groups. Many patients have entered advanced stages of the 
disease at the first visit, such as ischemic cardiomyopathy and acute coronary syndrome. 
Even if AS plaques are found, whether or not the lesions require intervention or 
vulnerability in clinical practice is a challenge that needs to be addressed. 

Ischemic cardiomyopathy is the final battlefield of clinical management of coronary 
heart disease. Although the mortality rate of patients with coronary heart disease began to 
decline in only 10 years, the incidence of heart failure increased dramatically. The 
changes of myocardial structure and function and the occurrence of cardiac remodeling 
are accompanied by malignant arrhythmia, systemic circulation embolism, multiple organ 
injury and a series of thorny complications. The 5-year survival rate of ischemic 
cardiomyopathy is only 26-52%, which is similar to the mortality rate of malignant 
tumors. In addition, the accurate assessment of cardiac remodeling and cardiac function, 
the range of viable myocardium and myocardial elasticity is of decisive significance for 
the formulation of a series of interventional strategies, such as revascularization, 
resynchronization pacing, cardiac transplantation and optimization of drug regimens. In 
summary, we can see that the clinical management practice of cardiovascular disease, 
especially coronary heart disease, is facing various problems such as how to reduce the 
cost of prevention and treatment, how to optimize cost-effectiveness, how to avoid 
excessive intervention and inadequate patient management, and how to reduce the high 
readmission rate and mortality. This article will focus on cardiovascular diseases and 
explore the new vitality of in-depth learning for cardiovascular diseases. 

At present, there are many ways to collect medical images, including magnetic 
resonance imaging (MRI), computed tomography (CT), X-ray imaging (X-rays), 
ultrasound imaging (Ultrasound imaging), positron emission tomography (PET). 
Pathological optical microscopy plays an important role in detecting the anatomical and 
functional information of different body organs for diagnosis and research [2][3][4][5]. 

In recent years, due to the rapid development of deep learning, people began to use 
deep learning technology in medical image analysis. At present, deep learning has made 
great progress in medical disease classification, lesion detection and segmentation and 
medical image registration[6][7][8][9]. Medical image classification refers to the use of 
deep learning method. Firstly, the object is pre-classified, and then the classification 
model is obtained by training. Finally, the classification of medical images is judged 
according to the model. Medical image segmentation is a preprocessing step for feature 
extraction and classification, which separates abnormal or special parts in medical images. 
Traditional image segmentation techniques include edge detection, threshold 
segmentation, region segmentation, clustering segmentation, etc. Later, watershed 
technology based on morphology and segmentation technology based on deformation 
model are introduced. In order to meet the needs of complex image segmentation, more 
and more people begin to turn their attention to depth learning, and the research of 
medical image segmentation based on depth learning is flourishing. In medical image 
registration, two or more images must be spatially aligned so that the same location in 
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each image represents the same physical location in the described organ. At first, in 
image registration, depth learning is used to measure similarity. This similarity measure 
is called mutual information, which is better than standard measure. Later, CNN in depth 
learning was used for end-to-end training to generate spatial transformation to minimize 
the dissimilarity between misaligned images for registration on various medical images. 

2. Deep learning method 

Deep learning is a new field in machine learning research. Its motivation lies in the 
establishment and simulation of the human brain to analyze and study the neural network, 
which mimics the human brain mechanism to explain the data [10]. The concept of deep 
learning is derived from the study of artificial neural networks, and the multi-layer sensor 
with multi-hidden layer is a deep learning structure. The essence of deep learning is to 
learn more useful features by building a number of hidden machine learning models and 
massive training data to improve the accuracy of classification or prediction. In this 
section, we will introduce several typical models of deep learning. 

2.1. Auto Encoder 

One of the simplest ways to deep learning is to use the characteristics of artificial 
neural networks. Given a neural network, assume that the input and output are the same, 
and then train and adjust the parameters; you can get the weight of each layer [11]. Then 
we can get several different representations of input I (each layer represents a 
representation), and these representations are features. The automatic encoder is such a 
neural network that can reproduce the input signal as much as possible. The auto encoder 
is an unsupervised learning, and its basic block diagram is shown in Figure 1 below. 

Encoder
Error

Input

ReconstructionCode

Decoder

 

Figure 1. Structure of auto encoder 

In order to reconstruct the input signal, the automatic encoder must capture the most 
important factors that can represent the input data. We define X is the input. So that the 
code is 

   Th W X= ,                            (1) 
Where the W is the weight matrix. That is, by learning to make the output more and more 
approaching and input.  
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2.2. Sparse Coding 

If we do not strictly require input and output equal, then the input and output 
relationship can be expressed as 

      
1

k

i i
i

X aφ
=

= ∑                           (2) 

Where X is the input, ia is the coefficient, iφ is the basis. If add ia sparsely limited, then 
this method is called sparse coding. Sparse coding has been successfully applied to a 
variety of problems in computer vision and image analysis [12]. Sparse coding algorithm 
is an unsupervised learning method, which is used to find a set of "super complete" basis 
vector to more efficient representation of the sample data[13]. The purpose of the sparse 
coding algorithm is to find a set of base vectors that allow us to represent input vectors as 
linear combinations of these base vectors. The sparse coding process is divided into two 
parts, the training phase and the coding phase. 

2.2.1. Training 

The sparse coding training process is an iterative process of finding the optimal 
solution. We assume that a series of the input signal data is [ ]1 2X , ,..., nx x x= . Each ix
represents a sample data. We intend to find a set of basis [ ]1 2, ,..., kφ φ φΦ =  (That is 
what we usually say the dictionary) to satisfy 

                                                       
2

, ,
1 1 1 1

, arg mi n
n k n k

i i j j i j
i j i ja

a x a aφ λ
= = = =Φ

Φ = − +∑ ∑ ∑∑
，

         (3)  

Where a is Sparse coding matrix, λ is a parameter of equilibrium reconstruction error 
and sparseness.  

Sparse coding of the iterative process can be divided into two steps: 
a) Fixed [ ]kΦ and then continue to adjust [k]a , minimizes the objective function; 
b) Fixed [k]a and adjust [ ]kΦ , minimizes the objective function. 
Through such an alternating iterative process we can get such a set of dictionaries, can be 
good to express the input signal X. 

2.2.2. Coding 

Coding stage is very simple. When given a new signal x, we only need to learn from 
the above dictionary, the sparse expression of x is to meet the following formula a. 

  
2

, ,
1 1 1 1

arg mi n
n k n k

i i j j i j
i j i ja

a x a aφ λ
= = = =

= − +∑ ∑ ∑∑           (4) 

2.3. Restricted Boltzmann Machine (RBM) 

Suppose there is a bipartite graph, each layer of nodes is not connected. Layer is the 
visual layer, that is, input data layer v. Layer is hidden layer h. If we assume that all 
nodes are random binary variable nodes and the full probability distribution p (v, h) 
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satisfies the Boltzmann distribution, we call this model a restricted boltzmann machine 
(RBM). 
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Figure 2. RBM network structure 

This RBM network has n hidden nodes, m visible nodes. In the network, the parameter 

n mW ×  is the weight matrix, b is the offset of the visible node, and c is the offset of the 
hidden node. RBM network is to have these parameters to determine the n-dimensional 
input samples encoded as m-dimensional feature samples. 

Let's take a look at the RBM network training process. First assume that each node 
value is in the set { }0,1 , that is { } { }i, , 0,1 , 0,1i jj v h∀ ∈ ∈ . A training sample

( )1 2, nx x x x=  , according to the RBM network can be encoded after the sample
( )1 2, my y y y=  . This m-dimensional sample can be viewed as a sample of m features 

extracted from n-dimensional input samples. 
The probability that the j characteristic of a hidden node is 1 is 

             ( )
i 1

=1 v = +
n

j ji i jp h w v cσ
=

 
 
 
∑                    (5) 

Similarly, on the basis of a given hidden layer, the probability that the i node of the visual 
layer is 0 or 1 is 

( )
m

ij j i
j=1

=1 h = w h +bip v σ
 
 
 
∑                    (6) 

Where the iv is the input ix , jh is the y j , 1(x)
1 exp(-x)

σ =
+

. 

The coding process is that first the probability ( )=1 vjp h is calculated from the value 
of v using Equation (5), and then a random number between 0 and 1 is generated. If it is 
less than ( )=1 vjp h , the value of h is 1, otherwise it is 0. Similarly, here is a coded 
sample y, the decoding process is to first use the formula (7) according to the value of h 
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to calculate the probability ( )=1 hip v , where the value of jh is the value of y j . And 

then randomly generate a random number between 0 and 1. If it is less than ( )=1 hip v , 
the value of iv  is 1 otherwise is 0. 

2.4. Deep Belief Networks 

From the above RBM network we can get DBN. DBN (Deep Belief Net) is to increase 
the hidden layer in RBM, in the vicinity of the visual layer to use the Bayesian belief 
network, where the node is not connected to the node is not connected, away from the 
visual layer part of the use of RBM. 

Hidden
Layers

Visible
Layer

RBM

Directed
Belief net

 

Figure 3. DBN structure 

The classic DBN network structure is composed of several layers of RBM and a layer 
of BP composed of a deep neural network, the structure shown Fig.4. 
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Figure 4. Classic DBN network structure 

DBN in the training model is mainly divided into two steps： 
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a) Respectively, unsupervised training of each layer of RBM network, to ensure that 
the eigenvector mapping to different feature space as much as possible to retain the 
characteristics of information. 

b) The BP network is set up at the last level of the DBN, accepting the output feature 
vector of RBM as its input feature vector, and supervising the training entity relation 
classifier. Moreover, each RBM network can only ensure that the weights in the 
self-layer are optimal to the eigenvector mapping, rather than the eigenvector 
mapping of the whole DBN. So the back-propagation network also spread the error 
message from top to bottom to each layer RBM, fine-tuning the entire DBN network. 
The process of RBM network training model can be regarded as the initialization of 
a deep BP network weight parameter, which makes DBN overcome the 
shortcomings of BP network due to random initialization of weight parameters and 
easy to fall into local optimum and long training time. 

2.5. Convolutional Neural Networks 

  Convolution neural network is a kind of artificial neural network, which has become a 
hotspot in the field of speech analysis and image recognition. One of its salient features is 
weight sharing. This greatly reduces the complexity of the network model, reducing the 
number of weights. The fMRI image is a three-dimensional image, which can be directly 
input as a CNN, thus avoiding the complex feature extraction and data reconstruction 
process in the traditional recognition algorithm. In the CNN, a small portion of the image 
is the lowest input of the hierarchy, and the information is then transferred to different 
layers, each of which passes through a digital filter to obtain the most significant feature 
of the observed data. This method can obtain significant characteristics of the observed 
data for translation, scaling and rotation. CNN network structure is shown in Fig.5. 

Input Convolution
Layer

Pooling
Layer

Relu Output
 

Figure 5. CNN network structure 

Convolution neural network training algorithm and the traditional BP algorithm is 
almost, mainly including four steps, the four is divided into two stages: 
The first stage, forward propagation phase: 
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a) Take a sample from the sample set ( ), pX Y and enter X into the network. 

b) Calculate the corresponding actual output pO . 

At this stage, the information is transferred from the input layer to the output layer via 
stepwise transformation. This process is also the network in the completion of training 
after the normal operation of the implementation process. In the process, the network 
executes the input with the weight matrix of each layer to multiply, resulting in the final 
output. 

( )( )( ) ( )( )(1) 2
2 1 W n

p n pO F F F X W W=                 (7) 

     The second stage, the backward propagation phase 
a) Calculate the difference between the actual output pO and the corresponding ideal 

output pY . 

b) Adjust the weight matrix by inverse propagation error. 

3. Deep Learning Pipeline for Cardiac Ultrasound Imaging 

This section describes end-to-end pipelines for heart disease, based on the three main 
parts shown in Figure 6. The whole process is divided into data acquisition and 
preprocessing, network selection, and training and evaluation of network performance. 
Below is a brief introduction to these three parts. 

3.1 Data acquisition and preprocessing 

Medical images are generally collected in DICOM format, which needs to be converted 
to an image format before image processing. There are a lot of tools that can be converted 
directly, for example, it can also be read by the dicomread function in MATLAB. After 
converting an image to JPG or PNG format, you first need to preprocess the image, such 
as removing poor quality images, denoising, and tagging. Make the corresponding image 
into a data set before you can use it for the next step. 

3.2 Network selection 

With the breakthrough of GPU hardware technology and the expanding scale of labeled 
data in ImageNet, deep learning technology has been promoted, and it has also made a 
breakthrough in image recognition. In 2012, Hinton and his student Alex Krizhevsky [14] 
proposed the deep convolution neural network AlexNet. With the help of stochastic 
gradient descent (SGD) and Dropout optimization techniques, Hinton won the ILSVRC 
championship in 2012, and achieved a good result of top-5 error rate of 15.3%. Since then, 
a large number of researchers have begun to enter this field, and in-depth learning has 
become irremediable, which leads to explosive research. In 2014, Christian Szeged et al. 
[15] designed Google LeNet and Karen Simonyan et al. [16] designed VGGNet, which 
made the network structure of in-depth learning break through in width and depth, and 
won the championship and the third place respectively in ILSVRC 2014. In 2015, 
Kaiming He et al. [17] made a breakthrough in the number of layers of neural networks, 
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designed 152 layers of ResNet, and the error rate of ResNet also fell to 3.6% which 
surpassed the human level, which shocked the academic community. Different networks 
have different advantages and disadvantages, and each has its own applicable environment. 
Therefore, different networks can be selected according to different tasks to train their own 
data and achieve their goals. 

3.3 Training and evaluation of network performance 

When deciding on a cardiac ultrasound task, first select the most suitable network, then 
adjust the parameters based on the network or change the corresponding layer settings of 
the network as needed to optimize performance. Finally, you can test the network on the 
test set, and if the effect is equally good then you can finally take this network to perform 
this task. 

Currently, researchers in deep learning have developed a variety of learning platforms, 
such as Caffe[18], DarkNet, Tensorflow[19], PyTorch[20], Keras, MxNet, Theano, CNTK, 
etc. Each deep learning platform has its own characteristics and has its own shortcomings. 
Different learning platforms can be selected according to different networks. 

4. Application of Deep Learning in Cardiac Image 

With the continuous development of artificial intelligence and deep learning, this 
technology has shown superior advantages in image processing. Due to the complexity of 
medical images, applying this method to medical image analysis and processing and 
analyzing medical images using deep learning will greatly reduce the burden on doctors 
and improve the efficiency of doctors in disease diagnosis. At present, there are many 
more and more researchers who use deep learning for cardiovascular diseases, such as 
segmentation, classification and registration. The specific research contents are shown in 
the following table 1-2: 

Table 1. Heart image segmentation using deep learning 

Author Year Dataset Segmentation 
content  

Method Dice 

Rudra P. K. Poudel 
et al[21] 

2016 PRETERM Heart RFCN 0.935 

Wenjia Bai et al[22] 2017 UK Biobank 
study 

Short Axis 
Heart 

Semi- 
supervised 
Learning 

0.92 

Baumgartner, 
Christian F et al[23] 

2017 ACDC 
challenge 

short-axis 
cardiac  

FCN 
U-Net 

0.950 

Ozan Oktay et al[24] 2017 UK Digital 
Heart Project 

short-axis 
cardiac 

ACNN 0.939 

Yakun Chang et 
al[25] 

2018 ACDC short-axis 
cardiac 

FCN 0.90 
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Table 2. Heart image classification using deep learning 

Author Year Dataset Classification 
content 

Method Accura
cy 

Lasya PriyaKotu 
et al[26] 

2015 Author 
self-made 

data 

the risk of 
arrhythmias 

k-NN 0.94 

Yu Gan et al[27] 2016 Author 
self-made 

data 

human atrial 
tissue 

region- 
based 

0.8041 

Houman 
Ghaemmaghami 

et al[28] 

2017 Author 
self-made 

data 

heart-sound TDNN 0.95 

XiaohongGao et 
al[29] 

2016 Tsinghua 
University 
Hospital 

viewpoint of 
echocardiography 

improved 
CNN 

0.921 

Ali Madani et 
al[30] 

2018 Author 
self-made 

data 

view of 
echocardiograms 

CNN 0.978 

In addition, there are other attempts, such as Fabian Isensee et al. for automated heart 
disease assessment on cine-MRI through time series segmentation and domain-specific 
features[31]. Marc-Michel Rohé et al. use shape matching to learn to apply deformation to 
heart registration problems between patients [32]. Zhifan Gao et al. employed a linear 
elasticity model of the carotid artery wall, and converted it into the state space equation in 
2017 [33]. Xiantong Zhen et al. propose a new, general framework for direct and 
simultaneous four chamber volume estimation in 2017[34]. Shen Zhao et al. developed a 
state-space framework to sequentially segment the carotid IM borders in each image 
throughout the cardiac cycle in 2018 [35]. Zhifan Gao et al. developed an implicit 
framework (UE-LUPI) using the deep neural network to reconstruct the strain field in 
quasistatic ultrasound elastography in 2019 [36]. Lin Xu et al. were to evaluate the value 
of multi-directional strain parameters derived from three-dimensional (3D) speckle 
tracking echocardiography (STE) for predicting left ventricular (LV) [37]. Nowadays, 
deep learning technology has been widely used in medical diagnosis, not only cardiac 
ultrasound images but also more medical applications waiting to be explored[38][39][40] . 

5. Conclusions and Future Research 

This paper focuses on the pipeline of deep learning cardiac ultrasound imaging. First of 
all, several models of deep learning are introduced, and the basic principles and 
architectures of several depth learning methods are briefly explained. Then the 
development status of cardiac ultrasound images and the application of deep learning are 
introduced. Deep reading has now become an important tool for heart disease analysis by 
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reading a large amount of literature. However, there are still many shortcomings, such as 
insufficient data, resulting in low accuracy, and currently only in theory, it is difficult to 
apply. There are many things worth studying in the future, such as combining deep 
learning with 5G technology to create a new medical model for smart medical and remote 
diagnosis. 
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