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Abstract
This work proposes a new adaptive approach to left ventricle segmentation based on a
non-parametric adaptive active contour method called Fast Morphological Geodesic Active
Contour (FGAC) combined with adaptive external energy via deep learning model. The
evaluation methodology considered echocardiogram exams obtained from volunteers.
Beyond the manual segmentations made by two specialists medical as ground truth. The
new approach is compared with three other segmentation methods, also based on the active
contour method: pSnakes, radial snakes with derivative (RSD), and radial snakes with
Hilbert energy (RSH). The FGAC combined with adaptive external energy showed better
Precision (99.53%, 99.72%) against RSD (99.46%, 99.68%), RSH (99.51%, 99.71%) and
pSnakes (99.52%, 99.72%). Besides, it achieved a relevant Jaccard similarity index
(67.40%, 62.02%), and promising accuracy (98.64%, 98.46%). Even though the metrics
differences are low, the proposed approach is fully automatic. Therefore, these results
suggest the potential of the proposed approach to aid medical diagnosis systems in
echocardiology.

Keywords
Active contours, Image Segmentation, deep learning, FGAC, Echocardiogram, Artificial
Intelligence

1. Introduction

The cardiac pathologies have occupied worrying positions among the diseases that most
cause deaths worldwide. In 2017, were registered 253 deaths per 100000 people in United
States [14], 67 in Germany, reaching most rates in Ukraine with 356 cases [32]. In Brazil,
mortality rate by cardiovascular disease reached 318 cases in same period, surpassing deaths
by cancer and respiratory diseases [10].

Important information to medical diagnosis of cardiovascular disease (CVD) can be
obtained from left-ventricle (LV). Attributes as ventricle area and volume are important to
diagnostic of anomalies such as cardiac ischemia or ventricle dysfunction, beyond to guide
the specialist in planning and execution of surgical procedure [39].
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In this sense, image processing techniques applied in diagnosis systems of
echocardiogram exams has been explored [4]. Among the applied techniques for medical
image segmentation can be mentioned mathematics morphology [30], region growing with
local thresholds [8], beyond watershed transform [3]. However, echocardiogram images
have a low contrast and the image objects boundaries do not contribute to appropriate
segmentation. According [37], traditional techniques do not obtain consistent segmentations
to regions with low contrast parenchyma leading to inappropriate results.

Thus, approaches inspired in deformable models has been highlighted makes the
segmentation more tolerant of noises such as methods based on the active contour methods
(ACM), also known as snakes. For instance, traditional snakes [24], Radial snakes with
derivative (RSD), Radial snakes with Hilbert energy (RSH) [1], and pSnakes based on polar
coordinates [9].

The segmentation inspired in ACM is formed by segments of lines that evolve, forming
a curve in the image domain. The curve is adapted according to the shape of the region near
the starting point, evolving to the edges of the object of interest. The adaptation process aims
to minimize a total energy formed by energies that depend on the active contour geometry,
the internal energy, and image characteristics that form the external energy [24].

Traditionally, ACMs need a definition of starting contour, and segmentation result can
change according to the place where it was defined. When the starting contour is applied in
regions with concavity, protrusions or bifurcations, it can lead to unexpected results [37].
In this case, a possible solution is to consider the density of the internal structures of the
cardiac muscle tissue, guiding the segmentation method in order to reduce the influence of
the noise.

The main noise present in the echocardiogram exams, known as speckle noise, is a
multiplicative noise and it is proportional to the intensity of the signal received by the
probe [4]. This noise produces a visual effect with a grainy texture, and it can difficult the
interpretation of the region on the image, reducing the definition of the edges that delimit
cardiac muscle. Thus, this work aims to develop a new adaptive approach, with automatic
initialization using the recent deep learning method called Mask R-CNN, proposed by
He in [19]. The advantage of this model over others is the ease in which it can adapt to
different tissues of cardiac parenchyma. Furthermore, this work provides a new approach to
segmentation of left-ventricle based on recent method FGAC proposed by Medeiros et al.
[29] adding a new adaptive external energy, in addition to comparing it with other ventricle
segmentation methods.

This paper is organized as follows: Section 2 presents a literature review of the main
topics related to this work, in Section 3, we present the algorithms and classification models
which give basis for the proposed methodology. In Section 4, all the details concerning the
methodology used here are discussed. The results and discussions are presented in Section
5, which leads to the conclusions in Section 6.

2. Left-Ventricle Segmentation Overview

In the past several decades, many segmentation methods have been proposed to address
LV segmentation. A comprehensive review can be found in [35]. These approaches may be
classified into three groups: model based approaches [31], image feature based methods [7]
and deformable models [1, 9, 4]

Some approaches are based in statistic model, for instance, K-Means clustering algorithm
is combined with mean filtering in order to identify starting point of active contour [31]. This
method was combined with traditional active contour [24] for detecting ventricle boundaries.
However, the model presented limitation for regions with cavities leading results with
unwanted regions.

Other approaches are based in extracted features of image, such as shape and textures.
Active Appearance Models, developed by Cootes et al. [7], combine a model of shape
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variation with a model of texture variation defining a set of dots that can represent the main
features of interest objects.

Active contours models [24], also known as snakes, have often been used for the
processing of medical images. A review of these approaches and their medical application
is given in [4]. The main recent researches aim ventricle segmentation using deformable
models with the new design of the external energy [37, 1].

The recent approaches using polar coordinates for ventricle segmentation [1], designed a
new external energy, this method is called pSnake. This technique is based on a nodes pair
called control nodes for detection edges of interest region. However, this method may not
have a behavior adequate when the desired object has a smooth edge, making it difficult to
detect peaks and consequently to define the boundary. Best results were for circular and
continuous forms.

Other approach, proposed by Guo et al. [16], presents an automatic myocardial
segmentation method based on active contours and measures of neutrosophic similarity, a
neutrophysiologic active contour model (NACM). The method uses a tissue clustering
approach to detect the left ventricle region. Performance evaluation is compared to manual
segmentation by an experienced radiologist. The evaluation metrics used were Hausdorff
Distance and Mean Distance.

More recent, Medeiros et al. [29] proposed a segmentation method called Fast
Morphological Geodesic Active Contour (FGAC), this approach is based on geometric
active contour. Inspired on equivalencies originally proposed by Neila et al. [27], this
method is built over mathematical morphology operators. The FGAC method is
differentiated by its potential to find an initial Level Set more near to desired structure
edges, this feature improves the convergence time, accelerating the segmentation task.

3. Materials

This section describes the main literature methods that support the left ventricular
segmentation methodology proposed in this paper.

3.1. Feature Extraction

The classification stage is based on the statistical and spatial distribution of the samples.
In this respect, the representative characteristics of each class need to be extracted. This
section presents three features extractors already consolidated in the literature.

Haralick et al. [17] proposed a statistical analysis according to co-ocorrency on gray
levels in the image. This method is called Gray-Level Co-Occurrence Matrix (GLCM)
and identifies the spacial influences of pixels concerning their grayscale. This method
shows that the use of statistical methods provides a dependent association between pixels.
From this co-occurrence matrix, it is possible to extract fourteen original descriptors. This
descriptors ability to represent, among the features, the angular second moment and entropy
are presented on Equation 1 and 2, respectively,

∑
i

∑
j

p(i, j)2 (1)

−∑
i

∑
j

p(i, j)log(p(i, j)) (2)

where p is central pixel, i and j are indexes according to image height and width.
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HU et al. [21] developed a model that uses central moments to become the method
invariant to scale and rotation changes. This method, known as HU moments, describes
a feature extraction family composed of seven moments; each one is invariable to size,
rotation, and translation operations. Equation 3 shows the relation between central moment
and normalized moment. This normalized moment can be obtained by the central moment,
µpq, divides by an exponential of the area, µ00, to obtain the normalized central moment,
ηpq.

ηpq =
µpq

µα
00

(3)

where

α =
p+q

2
;∀p+q≥ 2 (4)

Then, the seven moments are calculated by using their result as the image attributes.
These seven moments are described as
• I1 = η20 +η02
• I2 = (η20−η02)

2 +4η2
11

• I3 = (η30−3η12)
2 +(3η21−η03)

2

• I4 = (η30 +η12)
2 +(η21 +η03)

2

• I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η21 − η03)(η21 +
η03)[3(η30 +η12)

2− (η21 +η03)
2]

• I6 = (η20−η02)[(η30 +η12)
2− (η21 +η03)

2]+4η11(η30 +η12)(η21 +η03)
• I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)

2 − 3(η21 + η03)
2]− (η30 − 3η12)(η21 +

η03)[3(η30 +η12)
2− (η21 +η03)

2]
The SCM feature extractor proposed by Ramalho et al. [36] focused on identifying object

structures by applying a highlight function K to it. The K function must be set according to
the characteristics of images that belong to the problem. The current K highlight as a filter
where the most relevant features of the image are highlighted. SCM performs pixel-by-pixel
analysis by combining of a pixel in the original image concerning its neighboring pixels
in the K-filtered filtered image, using some neighborhood criteria. Finally, this matrix is
combined with its transposed matrix. The resulting symmetric matrix is the matrix from
which SCM attributes can be extracted.

Figure 1. Generic SCM model for two input signals. The input signal is filtered by
applying a K function. Next, the two-dimensional SCM histogram is created from the
original signal combined with the modified signal k(g) [36].

3.2. Classifiers

In this section is described the machine learning techniques used to classify the features
extracted by the traditional methods.
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3.2.1. Naive Bayes

Bayesian Classifier is based on input data statistical analysis. The classifications are
based on the probability distribution of each sample to a specific class, considering that this
class has the most probability of be associated with the sample [43]. Bayes Theory inspires
this model, and it supposes that no exist dependencies among the features, according to the
value of posterior probability and conditional probability.

3.2.2. K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a machine learning method proposed by [13], that fall in
the supervised category. It works by determining the class to which a sample belongs by
comparing the features of the k nearest neighbors that were acquired in a previous training
step. The variable k represents the number of samples of the training set that possess the
closest features to the sample being classified. Still regarding the variable k, there is not a
standard value for it, but , in general, even numbers are avoided to prevent a drawn situation
in which the sample could be classified in two classes at the same time.

3.2.3. Multilayer Perceptron - MLP

Multilayer Perceptron (MLP) is a neural network architecture formed by multiple layers
with perceptron neurons. Input data vector is introduced to first layer where each feature
is computed and each neuron contributes for transformation of input space to a linearly
separable space and thus to classify the object to its specific class [18]. Learning technique
is supervisioned through backpropagation algorithm where the errors calculated at last layer
are retro propagated to adjust the hidden layers [18]. Therefore, through this procedure, a
solution to samples in the input vector is presented on the output layer.

3.2.4. RBF

A Radial Basis Function (RBF) network is a particular type of neural network that
provides promising results in its use as a nonlinear classifier. Unlike MLP networks, the
approach of RBF networks is more intuitive; the network ranks by measuring the similarity
of the input data. The hidden layer neuron has a centroid, when new data is presented, each
neuron of the intermediate layer calculates the Euclidean distance between the data and its
centroid. A typical architecture of an RBF network, consisting of an input vector, a hidden
layer with radial base function-activated neurons (Gaussian function), and an output layer
that uses a linear activation function [34].

3.2.5. ELM

The Extreme Learning Machine (ELM) has the structure of an artificial neural network
with only a single hidden layer. Described initially by Huang et al. [22], the ELM has a
similar structure to the other Artificial Neural Networks, but the training principle is not
based on the descending gradient. Besides, the method does not use the backpropagation
algorithm, which makes the classifier robust to slow convergence and convergence to local
minimal. ELM training assigns random values to the weight matrix of the hidden layer
neurons. The matrix of the output layer is defined from the labels and by the resolution of
a linear system. The output hidden layer is directed to the output layer producing a linear
system where the solution can be obtained through the generalized inverse Moore-Penrose
matrix [41]. This latter matrix is known as the features matrix.
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Figure 2. Diagram with Mask R-CNN architecture adapted for classification of left
ventricle regions.

3.3. Mask R-CNN

Mask R-CNN proposed by He in [19], is an instance object segmentation method that
simultaneously generates detection and segmentation for each object in an input image,
Step 1. This method consists of a parallel addendum to Faster R-CNN, a Fully Connected
Network (FCN), which generates instance segmentation masks in addition to the classes,
Step 4.a, and bounding boxes, Step 4.b, already detected by Faster R-CNN.

Faster R-CNN detection algorithm, on Step 2 of Figure 2, proposed in [38], is divided
into two steps. The first is a Regional Proposal Network (RPN) that externals the candidate
bounding boxes for each object. In the second stage, a Fast R-CNN generates the
classification of each candidate object and improvement of its bounding box through
regression.

The FCN, proposed in [26], on Step 3 of Figure 2, in subsequent to Faster R-CNN
performs a Region of Interest (RoI) pixel-by-pixel classification, thus generating
segmentation by instances in the image using a binary loss and sigmoid per pixel. The
output of this network is the segmented object, Steps 5 and 6, region that best represents the
spatial structure for this object in the image.

3.4. Image Acquisition

Seventeen echocardiogram exams were used, totaling 34 images, including end images
diastole and systole. These images were taken of an echocardiograph (GE, Vivid 7 PRO
model) of the Prontocardial Clinic in Fortaleza, CE. A echocardiographer (ECO 1) records
seventeen exams synchronized by the electrocardiogram (ECG) left ventricular (LV) short
axis position. The trackball is used to manually contours of the inner edges at the end of
diastole and LV systole, synchronized with wave start Q and ECG T-wave peak, respectively,
with immediate obtention of diastolic, systolic volume and ejection fraction (FEJ). Another
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echocardiographer (ECO 2) independently performs the measurements of the same 34
images on a laptop computer to interobserver analysis.

3.5. Evaluation Metrics

In this work, we use the following evaluation metrics for the segmentation performed:
Accuracy (ACC) [12, 42], Sensitivity (Sen) [12, 42], Specificity (Spe) [12, 42], Positive
Predictive Value (PPV) or Precision (PRE) [12, 42], F1-SCORE [42, 40], Matthews
correlation coefficient (MCC) [28], Jaccard Index (JAC) [23] and Hausdorff Distante
(HD) [20].

We calculated the metrics by comparing the segmentation pixels with the ground-truth
pixels. Organ-owned pixels that were segmented as such are true positive values (TP), while
pixels that do not belong but were segmented as part of the ventricle compute false positive
values (FP) for non-segmented, non-organ pixels. Of interest, we have true negative values
(TN), and when pixels that belong to the ventricle are not segmented, we get false negative
values (FN).

4. An Automatic Left Ventricle Segmentation via Morphological
Geodesic Active Contour with adaptive external energy

In this section, we present a new approach to left ventricle segmentation inspired by
classical geodesic active contour proposed by Caselles et al. [5], described in subsection
4.1, demonstrating its concepts and main equations. This approach is designed via
morphological operators originally proposed by Marquez [27], described on subsection 4.2.
Finally, in subsection 4.4, the proposed method is described based on previous
fundamentals combined with an automatic initialization that approximates the initial
contour of the desired segmentation region, providing rapid convergence, simplified and
stable implementation.

4.1. Traditional Geodesic Active Contour

According to Caselles et al. [5] the evolution of a curve C over time can be given due to
the effect of the partial differential equations (PDE) Ct =F ·N, where F denotes the curvature
regarding normal vector. Previously, Osher-Sethian [33] proposed the representation of
C curve by means of a numerical scheme called Level Set. The Level Set method allows
represent C as a embedding function u, such that C(t) = {(x,y);u(t,(x,y)) = 0} evolves in
relation to time t. Thus, the curve fitting C of any function u(x,y) which embeds the curve
as one of its level sets is:

∂u
∂ t

= F · |∇u| (5)

The mean curvature motion operator proposed by Evans et al. [11] give us curvature of
C:

∂u
∂ t

= div
(

∇u
|∇u|

)
· |∇u| (6)

where the curvature of the implicit curve is given by the divergence of the normalized
gradient. This representation aims to minimize the functional of energy from geodesic curve.
The geodesic refer to differential geometry and means the shorter distance between two
point on riemannian domain.

Based on this implicit representation of the curve C, Caselles et al. [5] proposed the
traditional Geodesic Active Contour (GAC). The GAC method adds a border detector g(I)
that guides the curve evolution to the edge object:

g(I) =
1√

1+α|∇Gσ ∗ I|
(7)
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where Gσ ∗ I is a Gaussian filter with standard deviation σ , α is a weight factor. The g(I)
function is low near edges of image and allows us to select which regions of the image we
are interested in.

In this sense, GAC method does not depend on the parametrization per point of the curve
and the minimum energy curve corresponds to the geodesics of a riemannian space whose
metric can be defined by g(I). This energy minimization can be represent by:

E(C) =
∫ length(C)

0
g(I)(C(s))ds (8)

Euler-Lagrange equation can gives us the descent direction of the functional on 8:

Ct = (g(I)K +g(I)ν−∇g(I) ·N)N (9)

where K is the euclidean curvature of C, ν ∈ R is the balloon force parameter. Thus, is
possible to define the curve evolution in a level set framework from the previous PDEs,
rewriting Equation 9 in terms of level set:

∂u
∂ t

= g(I)|∇u|
(

div
(

∇u
|∇u|

)
+ν

)
+∇g(I)∇u

+g(I) ·ν‖∇u|
(10)

Numerical integration methods can be used to solve differential equation at 10, by means
of finite-difference scheme. However, these techniques are computationally costly and
converge slowly. In the next sections, we introduce an approach based on morphological
operators in a simple, stable and fast way.

4.2. A morphological approach to geodesic active contour

Numerical solutions of partial differential equations were proposed by Lax [25]. His
work was pioneer in the use successives mutiscale dilatations and erosions morphological
[15], in order to offer a stable and efficient numerical scheme to solving PDEs. Posteriorly,
Catté et al. [6] proved that successives applications of the mean operator, for a structuring
element sufficiently small is equivalent to the curvature flow of the PDE at Equation 6.

Successive applications of dilatation and erosion morphological can achieve an
equivalence relation with differential operators. Alvarez et al. [2] demonstrated that it is
possible with a structuring element sufficiently small , i.e, limm→∞(Dt/m)

mm0. Thus, we
can approximate the dilatation with infinitesimal equivalency to solution of ∂u

∂ t = |∇u| as:

lim
h→0+

Dhu−u
h

= |∇u| (11)

Similarly, the erosion operation can also approximated:

lim
h→0+

Ehu−u
h

=−|∇u| (12)

with a result equivalent to solution of ∂u
∂ t =−|∇u|.

Marquez-Neila et al. [27] improved Lax curvature operator like a composition of
morphological operators, DE and ED. Therefore, by approximation, it is possible an
equivalent behavior to the curvature operator (PDE 6) and contrast-invariant:

(DE√h)◦ (ED√h)≈ div
(

∇u
|∇u|

)
· |∇u| (13)

where DE is ED are respectively the combination of erosion and morphological dilatation,
and dilatation and morphological erosion, described by Marquez-Neila et al. [27].
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Finally, inspired by equivalencies between morphological and differential operators, it
is possible to solve the PDE 10 by means of approximations by morphological operators.
Differential operators can be replaced by PDE 11 and PDE 12. The mean curvature motion
PDE can be approximated by morphological curvature operator at Equation 13.

Moreover, in this morphological approach, it is noteworthy that the initialization level
set refers to a binary component, where the curve representing that denotes the region
of interest is defined by the edges of the of that component. A faster and stable way to
converge the active contour, since level set binary is defined by a region very near to the
target image edges. This approach requires a reduced number of iterations to achieve stable
curve, offering a fast process of convergence.

In this sense, the proposed methodology is formed by the location stage of the left
ventricle internal region for define the initial Level Set, subsection 4.4, and construction
of the adaptive external energy that defines the evolution boundaries of the active contour,
described in subsection 4.3).

4.3. Adaptive External Energy

This section presents the proposed approach to recognize the adaptive external energy.
Two methods were evaluated to improve our methodology. The first, classical feature
extractors are combined with classification models; second, deep learning approach using a
classification technique based on regions. Figure 3 illustrates the step-by-step to recognize
the ventricle region.

Figure 3. Flowchart to recognize the ventricle region. Above, the classical way that
combines traditional feature extractors with classification models. Below, the approach
based on deep learning.

4.3.1. Classical approach

The combination of classification models with traditional feature extractors formed the
classical approach. This is useful to evaluate the capability of the traditional methods on the
task of detecting cardiac muscle regions on echocardiogram exams.

Feature extraction

Three traditional feature extractors perform the stage of feature extraction based on
image texture: GLCM, HU, and SCM. SCM method is evaluated under three configurations:
Average, Gaussian, Laplacian, and Sobel Filter. Each feature extractor defined a vector that
represents two different regions: Non-Ventricle Class and Ventricle Class.
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Figure 4. Adaptive external energy detection. To minimize the energy, only low-cost
regions will be analyzed by FGAC [29].

Classification

After extract features, the output of the previous stage is used as input to the classifiers
group: KNN, ELM, MLP, and RBF. The KNN model is configurated with K varying from 1
to 5. ELM model is built with Moore-Penrose generalized inverse. MLP is configurated
modifying its hidden layer with ten until hundred neurons. The dataset was split on 20% to
test and 80% to train. All models were evaluated with 100 epochs, and average results were
considered.

4.3.2. Deep Learning Approach

In this section, we will explain how we find the external energy that is used for the
FGAC, describe the Mask R-CNN training step, and how we use its output as external
energy for our method.

Training Stage

During training, we used Faster R-CNN Inception V2 as an attribute extractor for a batch
of size 1 for 120,000 iterations. We consider an Inserction over Union (IoU) threshold of
0.9 to filter out low-confidence detections to ground-truth image. Initially, the learning rate
was 0.002 being decreased by 10 into 90,000 steps. We use a momentum of 0.9 without
Dropout.

The Total Loss for each RoI is given L = Lcls + Lbox + Lmask, where Lcls is the loss in
classification, Lbox is the loss in the detection and Lmask is the loss of the segmentation mask.
Lmask is used to generate masks for all classes, so the output mask is chosen from the class
predicted by Faster R-CNN.

Training averaged 130 milliseconds per iteration. Total training time was 4 hours and
20 minutes, with a training set of 80% of the dataset with data augmentation images. We
perform data augmentation by horizontally flipping the original images to double the training
dataset from 28 to 56 images. At the end of the training, Total Loss was stabilized and less
than 2%.

Energy Detection Stage

From the segmented output instances of Mask R-CNN, we have made a binarization
of the image, so we have separated the spatial structure that represents the ventricle within
the image, as shown in Figure 2 at the output of the FCN. Then we extract the edge of the
segmented image to use as External Energy for FGAC method.

Thus, from precisely segmented instances, we obtain profoundly relevant attributes of
the ventricle edge, so that we have a more significant amount of information about this
region of the organ, since it is not well defined in the image, avoiding possible failures in
the segmentation targeting that are related to this region.
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Figure 5. Flowchart for detection of the initial Level Set. An initial contour, with radius R,
is projected with center at region centroid.

Figure 4 shows the flowchart of detection and calculation of adaptive external energy.
After the result of Mask R-CNN, obtained in stage 2 of Figure 3, the area delimited by
the region is attributed a negative cost, on the other hand, the external region represents an
unwanted area and is assigned a positive cost. FGAC maintains its traditional evolution as
proposed by Medeiros et al. [29], but we added the local cost calculation for the region.
High-cost regions are considered as border regions. Thus the contour points do not advance
in this region and continue to prioritize low-cost regions, searching for the gradient that
defines the left ventricular border.

4.4. Initial Level Set

A crucial stage for approaches based on the active contour method is the definition of
the initial contour. According to [37], initializations in undesired regions with low contrast
contribute to the reduction of the influence of the gradient vector on the image, this may
lead the method to early convergence or to define contours beyond the region of interest.

This work proposes an adaptive initialization based on the local classification of regions
of interest. The methodology considered two different approaches. The first initialization,
according to region attribute extraction that defines the left ventricular area, this step is
followed by classification using traditional classification models. The second approach,
however, uses the convolutional neural network Mask R-CNN mentioned on section 4.4.

Figure 5 illustrates the stages of initial contour detection. At step 1, the echocardiogram
exam is linked, then at stage 2, two approaches for detecting candidate regions are evaluated.
In stage 3, the classifiers identify the candidate regions. Finally, in step 4, the centroid of
the candidate region is calculated. From this centroid with radius R, the initial level set of
the active geodetic contour is identified.

5. Results

This section describes the results of the proposed approach, which were calculated on a
machine that comprises an Intel i7, 8GB of memory, with the Linux Ubuntu 16.04 operating
system. The results in this paper are shown in three stages. The first step corresponds to
the study on the calculation of adaptive external energy, evaluating two approaches, one
traditional and the other with deep learning. The second stage evaluates FGAC performance
combined with adaptive energy for left ventricular segmentation. Finally, a comparison to
the expert methods Radial snakes with derivative (RSD), Radial snakes with Hilbert energy
(RSH) [1], and pSnakes based polar coordinates [9] is showed.

According the results using classical approaches, presented in Table 1, the traditional
approach for the calculation of adaptive external energy presented hit rates close to 60%,
in contrast with the combination of the SCM characteristic extractor with Sobel filter
combined with the RBF classifier that presented an accuracy above 83.56%. Besides, the
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best combination also had a sensitivity higher than 87.73%, which indicates a considerable
approximation of the desired region.

Looking at Table 3, we have the combinations of extraction methods with the Bayesian
classifier as the fastest, with classification time about 0.055 seconds to the SCM-Average
extractor. However, as seen in Table 1, its hit rate presented a low performance, with 61.91%
for the fastest combination. Meanwhile, the combination of best metrics, according to
Table 1, was obtained by RBF and SCM-Sobel, achieving a high ranking time, about 7.247
seconds. The Figure 6 presents a comparison between the best combinations of classical
extractors and classifier models.

Best classifier with feature extractor.
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Bayes+SCM Average ELM+Haralick MLP+Haralick
KNN+Haralick RBF+SCM Sobel R-MASK-E10

Figure 6. Graph representation of the best classifier combinations and feature extractor
against the deep learning model R-MASK.

On other hand, according to Table 2, we have Mask R-CNN-E10 with metrics higher
than the RBF and SCM-Sobel combination, presenting 98.91% of accuracy and 99.93% of
specificity, with classification time equals to 1.946 seconds, almost four times faster. So we
can say that our adaptive external energy approach using Mask R-CNN-E10 is more efficient
than using classic machine learning and extraction methods. The hit rates have average
values above 98.91%, and for Specificity, the method has a rate of 99.93% indicating a high
hit rate of the method relative to the regions of interest that represent the left ventricle. The
results suggest that the calculation of adaptive external energy by R-MASK presents a better
sensitivity to recognize the left ventricular area, surpassing all other classical combinations
according to Figure 6.

Finally, by evaluating FGAC performance with echocardiographic imaging expert
methods, according to the manual segmentation by two human specialists,
echocardiographer 1 (ECO1) and echocardiographer 2 (ECO2). The results indicate that the
proposed approach presents a higher accuracy over the ECO1 expert markings, averaging
99.53%±0.47 outperforming the pSnakes, RSD, and RSH methods with 99.52%±0.38,
99.46%±0.40, and 99.51%±0.37, respectively. Similarly, the same result was also
presented when comparing the manual ECO2 segmentations, according to Table 4. A visual
comparison is presented in Figure 7, showing that the proposed approach achieved a
precision higher than other segmentation methods, according to manual segmentation made
for both specialists.

Two segmentation samples via FGAC combined with the adaptive external energy can
be seen in Figure 8, Figures 8(a) and 8(b) show contour comparisons between specialist and
proposed segmentation. The green contour represents the specialist segmentation while the
white contour represents the proposed segmentation. In addition to the evaluation metrics
already mentioned, the visual approximation between both contours corroborates to previous
results.
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Figure 7. Graph representation of the Precision metric achieved by the approach proposed
according to manual segmentation from two echocardiographers.

Table 1. Accuracy, Sensitivity, Specificity, PPV, F1-Score, and MCC obtained through the
classification of extracted attributes with classical extractors.

Method ACC Sen Spe PPV F1-SCORE MCC

Bayes

Haralick 28.97 71.45 27.97 2.28 4.42 0.19
Hu 43.21 71.44 42.58 2.68 5.17 4.13

SCM-Average 61.92 60.38 61.95 3.37 6.39 6.66
SCM-Gaussian 58.87 64.56 58.75 3.33 6.33 6.86
SCM-Laplacian 48.57 86.09 47.73 3.55 6.81 9.90

SCM-Sobel 51.77 80.78 51.13 3.53 6.76 9.29

KNN

Haralick 73.34 67.25 73.48 5.34 9.90 13.33
Hu 61.01 79.86 60.59 4.26 8.10 11.97

SCM-Average 59.69 80.26 59.24 4.16 7.91 11.64
SCM-Gaussian 60.47 78.96 60.06 4.17 7.92 11.52
SCM-Laplacian 64.90 79.82 64.57 4.80 9.06 13.50

SCM-Sobel 65.27 79.52 64.95 4.76 8.99 13.46

ELM

Haralick 71.73 68.04 71.81 5.09 9.47 12.80
Hu 43.21 78.42 42.41 3.00 5.78 6.22

SCM-Average 67.39 62.04 67.51 4.03 7.57 9.11
SCM-Gaussian 66.81 63.12 66.89 4.03 7.57 9.21
SCM-Laplacian 61.96 83.17 61.49 4.57 8.66 13.30

SCM-Sobel 61.77 81.33 61.33 4.43 8.41 12.68

RBF

Haralick 58.61 59.62 58.59 3.41 6.46 5.65
Hu 51.51 87.51 50.56 4.47 8.50 12.06

SCM-Average 72.72 53.65 73.12 4.07 7.56 8.57
SCM-Gaussian 73.95 48.90 74.55 4.45 8.16 8.13
SCM-Laplacian 68.20 85.25 67.77 6.21 11.57 17.33

SCM-Sobel 83.56 87.74 83.41 16.44 27.69 33.63

MLP

Haralick 71.05 70.33 71.07 5.15 9.59 13.22
Hu 52.14 79.69 51.51 3.62 6.93 9.23

SCM-Average 64.77 64.45 64.78 3.88 7.32 8.86
SCM-Gaussian 65.22 65.11 65.22 3.96 7.46 9.20
SCM-Laplacian 62.66 82.84 62.20 4.67 8.89 13.56

SCM-Sobel 63.48 81.57 63.08 4.68 8.84 13.42
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Table 2. Accuracy, Sensitivity, Specificity, PPV, F1-Score, and MCC obtained through the
classification of R-MASK CNN combined with region adjusting.

Method ACC Sen Spe PPV F1-SCORE MCC
R-MASK-E5 98.85 70.93 99.80 92.47 80.28 80.45

R-MASK-E10 98.92 68.53 99.94 97.24 80.40 81.16
R-MASK-E11 98.33 49.25 99.97 98.41 65.64 69.00

(a) Echocardiogram 1.

(b) Echocardiogram 2.

Figure 8. Contour images of ground truth (green) and FGAC output (white) of the left
ventricle segmentation.
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Table 3. Average classification time to evaluated methods.
Method Classification Time (s)

Bayes

Haralick 0.0749179
Hu 0.0581979

SCM-Average 0.0553418
SCM-Gaussian 0.0577158
SCM-Laplacian 0.0567364

SCM-Sobel 0.0561102

KNN-5

Haralick 11.2853684
Hu 9.0762435

SCM-Average 9.1499707
SCM-Gaussian 9.0275925
SCM-Laplacian 9.1266493

SCM-Sobel 9.1100188

ELM

Haralick 1.0292084
Hu 1.1189812

SCM-Average 1.0331317
SCM-Gaussian 1.0582434
SCM-Laplacian 1.0497182

SCM-Sobel 1.0708105

RBF

Haralick 10.0292491
Hu 7.2972785

SCM-Average 7.2283257
SCM-Gaussian 7.2405187
SCM-Laplacian 7.2616954

SCM-Sobel 7.2470709

MLP

Haralick 2.3964001
Hu 2.4210172

SCM-Average 2.3627517
SCM-Gaussian 2.3352131
SCM-Laplacian 2.2789647

SCM-Sobel 2.2695069
CNN-RMASK 1.9460632

Table 4. Proposed approach result against available segmentation methods in the
specialized literature.

Expert Method PRE ACC JAC HD SPC
ECO1 Proposed 99.53±0.47 98.64±0.51 67.4±11.82 5.64±0.97 99.07±0.51
ECO1 pSnakes [9] 99.52±0.38 99.02±0.55 74.34±12.07 4.90±1.14 99.46±0.54
ECO1 RSD [1] 99.46±0.40 99.07±0.49 74.32±11.76 4.65±1.05 99.57±0.51
ECO1 RSH [1] 99.51±0.37 99.05±0.59 74.46±12.18 4.80±1.13 99.51±0.64
ECO2 Proposed 99.72±0.37 98.46±0.65 62.02±15.24 5.66±1.16 98.69±0.73
ECO2 pSnakes [9] 99.73±0.31 98.86±0.66 69.22±14.20 5.17±1.14 99.10±0.71
ECO2 RSD [1] 99.68±0.36 98.94±0.62 70.00±13.01 5.01±1.08 99.22±0.68
ECO2 RSH [1] 99.71±0.33 98.88±0.75 69.36±13.31 5.20±1.25 99.14±0.81
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6. Conclusion

In this paper, we propose a new approach to automatic segmentation of the left ventricle
in the echocardiogram exams. In this approach, we combine the morphological geodesic
active contour with a new adaptive external energy based on classification via deep learning
technique. To automatically identify the left ventricle region, the results indicated that the
classical approach achieves its best result with SCM-Sobel combined with the RBF model,
performing a hit rate of about 83.56%. On the other hand, the deep learning technique via
Mask R-CNN presented the best hit rate, with 98.92%. This method surpasses all other
combinations, indicating its applicability in the calculus of the adaptive external energy.

The addition of adaptive external energy presented the hit rate equivalent to or higher
than the expert methods already shown in the literature, with promising higher accuracy
(99.72%) and equivalents precision (99.72%) and similarity rates as Jaccard Index (67.40%)
and HD (5.6384). These results suggest that the adaptive approach can to aid the FGAC in
differentiating the cardiac muscular tissue of other regions, achieving promising
performance.

As future works, we aim to apply the method to a dataset with higher image volume,
aiming to improve the prediction of adaptive external energy with Mask R-CNN and other
new deep learning techniques based on region classification. Besides, we aim to evaluate
the performance of the method to calculate the ventricular ejection fraction, mainly when
the region is damaged by pathologies that altered the image contrast.
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