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Abstract

The eagerness and necessity to develop so-called smart applications has taken the Internet
of Things (IoT) to a whole new level. Industry has been implementing services that use IoT
to increase productivity as well as management systems over the past couple of years. Such
services are now encroaching on wind energy, which nowadays is the most acceptable source
among renewable energies for electricity generation. This work proposes an intelligent
system to identify incipient faults in the electric generators of wind turbines to improve
maintenance routines. Four feature extraction methods were applied to vibration signals,
and different classifiers were used to predict the running status of the wind turbine. We
correctly identified 94.44% of normal conditions, reducing the false positive and negative
rates to 0.4% and 1.84%, respectively; a better result than other approaches already reported
in the literature.
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1. Introduction

Recent trends in technology show that the Internet of Things (IoT) is a growing field in
academic research and for real applications. Its potential usages are vast, ranging from low
to hi-tech industries [31]. The number of connected devices will have tripled by 2020, and
it will be surrounded by a trillion dollar global market [66]. Lee [33] classified IoT as an
industrial Internet, since it is going to change today’s computing paradigms and trigger new
business models in order to satisfy industries and market needs.

The IoT is based on providing Internet for any kind of device, so they can easily
exchange information between servers [27]. The purpose of 10T is to create automatic
services, making these devices fully accessible to the operator; this is the so called smart
device. A literature review made by Xu [67], showed that the number of papers published,
surrounding 10T, increased 5 times in a four-year period. This growth in the field is due
to the technical development in electronics, with miniaturization and power enhancement,
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and computing with distributed processing improvements [57]. However, this global trend
demands standards for production and usage, and this was perceived by Xu [67]. These
authors indicated that the success of 10T relies on these standards, because they are going to
make systems more interoperable and reliable.

IoT standardizations are being developed by international and highly qualified technical
organizations, such as IEEE, International Organization for Standardization, and various
others [4, 67], alongside the many countries that have invested in IoT development. In
Europe, the United Kingdom invested more than US$ 5 million in projects, while an
international forum was created under the IoT European Research Cluster (IERC) to discuss
the direction of development and to ensure proper funding [67]. Meanwhile, China wants
to take IoT to a whole new level; they made US$ 1.6 billion in grants and loans in 2015
and projections indicate their IoT manufacturing market is going to mobilize US$ 127.5
billion in 2020 [8]. In the United States, companies like IBM indicate that the Internet
of Things is a field of interest to improve technology infrastructure, and Japan also has
shown strategies to create smart city standards [67]. Reviews in the literature indicate that
(1) interests, concerns and investments in IoT are being applied all over the world, and (ii)
China, a strong tech-developer, vouches this technology as one of the most promising, as
can be seen from its large investments over the last few years and its future projections.
Therefore, IoT is not only a trend, but is in fact being designed now for a future reality.

Diagnosing faults previously in wind turbines is very important to ensure a reliable and
efficient operation, especially in offshore insulation. However, prior knowledge about the
state of health and possible flaws that the wind turbine may have to succeed in the diagnosis
is necessary [34]. Research uses data specific to wind turbine, for example, short circuit
current [53], axial flow [13], and Vibration [35, 60, 41], used in this work. Others analyze
the wind turbine dataset to detect failures [11, 70].

Roposing a new architecture of a Cyber-physical system (CPS) in the manufacture of
modules of high Intensity Discharge (HID) cables, it used the technology Iot [32]. Due
to multilocation and multi-product production, some factors limit process quality control
and device application Iot aims to address this limitation by detecting system status and
transmitting signals to the cloud. The author analyzes and classifies data using deep learning
techniques. In the cloud, a process simulation is performed with data from the Iot devices
and the results aid in real-time process decision making.

In other research, Lee [33] categorized IoT as (i) control and monitoring in terms of
data collection from automated control systems to tracking variables and performance in
real time, independent of location.This feature is important for technologies that require
advanced control and monitoring such as power grids.(ii) Big data and business analysis
is another category, and it is based on systems that allow to generate data in large scale,
from sensors and / or usage information. These data provide relationships between different
systems, enabling you to identify problems and develop business strategies, as well as
providing customer-facing services. However, the system we will describe here, has both
characteristics.

In order to increase reliability, predict failures, reduce operating / maintenance costs and
prevent serious accidents that damage the ecosystem, this paper proposes a solution to a
health monitoring system for wind generators using Iot technology. We present a framework
for detecting incipient faults in wind turbines. Our system was developed based on an IoT
infrastructure. A system, containing the framework, will analyze the vibration signal of the
wind turbines and send information on the status of the wind turbines to devices connected
to the network. More explicit information will be provided and in smaller time intervals,
allowing technical managers to conduct preventive maintenance actions to improve the
efficiency of wind farms, reduce operating costs and thus ensure cheaper electricity.

This paper is organized as follows: Section 2 presents a literature review of the main
topics related to this work. In Section 3 all the details concerning the methodology used
here are discussed. The results and discussions are presented in Section 4, which leads to
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the conclusions in Section 5.

2. State of the art

In this section we present a literature review on the following topics: a wind energy overview
in Section 2.1 and an IoT paradigm for wind farms in Section 2.2. The main faults that
occur in wind turbines are discussed in Section 2.3. The feature extraction methods used to
process vibration signals are exhibited in Section 2.4; and the machine learning methods
used for classification are shown in 2.5.

2.1. Wind energy overview

The increase in the gross domestic product (GDP) is directly linked to industrial production
and consequently economic growth in a country. The input generated in the electric energy
industry influences the national economy due to its importance for the sectors of goods and
services [69]. China is an example of a country where dependence on electricity is implicit
in high output. The research conducted by Yuan [69], shows a positive correlation between
energy production and the food industry, which is considered crucial, especially in densely
populated countries. Renewable energy sources have emerged in the midst of energy needs,
with the aim of reducing problems related to the burning of fossil fuels[48] and reducing the
costs of generating energy by diversifying the energy matrix [58].

Countries with renewable energy sources strongly represented in their energy matrices
demonstrate economic advantages, as reported by Valodka [64]. However, some countries
have little land space for the installation of wind farms and the availability of natural
resources is not favorable. So developing intelligent systems to manage and optimize the
maximum power generation is important.

Also, according to the Global Wind Energy Council GWEC [21] wind energy, today, the
most appropriate and stable source in the context of renewable energy sources. The global
installed capacity reached 486.8 GW by the end of 2016 [21], illustrating the significant
growth of the last years and projecting a promising scenario in 2030, where the wind energy
will be able to supply up to 19% of the world’s electricity needs[20].

Despite the present favorable growth of wind energy for investment, the implementation
of a wind farm is a complex decision, since it is based on a trade-off between productive
needs, economic interests, government policies and socio-environmental impacts. Sovacool
[61] studied the energy market of the United States, and described the main impediments
to include renewable energies in the energy matrix. The most important argument was
related to the discontinuous nature of alternative sources, such as wind power. In contrast,
Sovacool [61] showed evidence that the conventional energy sources also suffer variability
of production and that wind energy when used on a large scale is extremely beneficial to
the energy matrix. And an Internet of Things based system is important to manage multiple
wind turbines by optimizing power generation and maintenance actions.

The very nature of wind generates power variability to the electric grid [26]. Katzenstein
[26] analyzed the impacts on the final cost of electric power, according to the criterion of the
variability in the power of wind farms. Compiling production data from 20 wind farms and
energy price data, the authors noted that the price variability of up to US$14/MWh, could
be reduced to US$3.16/MWh by increasing the capacity factor of a wind farm. Polinder
[43] reports that 30% of the final cost of energy is due to operational costs of an offshore
wind farm.

2.2. IoT system and operational costs of a wind farm

Kiviluoma [29] analyzed the behavior of the power variation in different regions and
demonstrated that rapid changes in local wind conditions cause power fluctuations in the

DOI: 10.33969/A1S.2019.11001

3 Journal of Artificial Intelligence and Systems



Sousa, Pedro H. Feij6 et al.

order of 10% to 30%. Due to these characteristics, the economic viability concerns of a wind
farm are complex and particular to each region, so studies are needed to promote methods
to maximize the power extraction of a wind farm.

A reliable monitoring tool is one of the most efficient way to mitigate operational costs
of a wind farm, according to Asfani [2]. IoT systems plays important roles in this field,
because nowadays we have: efficient hardware for monitoring and data acquisition; high
computer power for data processing, with cloud computing and infrastructure.

Several researchers analyze the benefits of the introduction of Internet devices in the
energy industries. Faheem [16] optimized the smart grid integrations by applying algorithms
and wireless sensor networks in the system. This area of research converges with another
area, pattern recognition, built by several types of data-based methods with the objective of
finding relevant information in large datasets. Qureshi [45] was able to predict wind energy
by applying an algorithm based on artificial neural networks and Faheem [16] used it to
forecast wind speed. Both pieces of research apply machine learning techniques to solve
problems in wind energy.

Solid contributions from the IoT community have made this research possible, because
there are various developments in microelectronic devices, standards and suggestions for
data collection and analysis. Also, concepts of monitoring and management systems have
established a solid basis to develop a solution that is integrated with local needs and aligned
with global standards.

2.3. Faults on wind turbines

A report on data, made by Hahn, Durstewitz and Michael [22], has shown how the electrical
generator is the most critical component in a wind turbine. A problem in this equipment
decreases operational availability three times more than any other component. This also has
an impact on the cost of energy, which is about 30% according to Polinder [43].

There is a conscious need to maintain the reliability of such equipment through predictive
and preventive measures due to the high cost of generator maintenance when some failure
occurs. Some authors claim that from 30% to 40% of induction motor failures are caused by
short-circuits in the stator [30]. Early identification of these failures will reduce the cost of
energy. In general failures are due to the bearings 69%; stator windings 21%; rotor bars 7%
and shaft/coupling 3% [17].

One of the ways to detect short-circuit failures between stator turns is through current
signature analysis, which characterizes the induction motor through current analysis and
its frequency spectrum [63, 44, 18]. Another method is the vibration analysis [47, 24, 25],
which is the focus of this work.

Vibration monitoring is one of the most widely used and most appropriate techniques for
rotating machine analysis [5], so much so that it has been used in recent works as in Azizi
[3], which used vibrational analysis for cavitation detection in centrifugal pumps. Stopa [62]
presented a study of the frequency spectrum in vibration signals in rotary pumps that had
failed. However, the alternative method to detect the cavitation phenomenon in centrifugal
pumps proposed by the author failed to achieve results superior to the results presented by
the vibration and pressure sensors methods typically used.

Ramalho [50] shows the vibration patterns of an electric motor submitted to operations
with different types of loads and with misalignment that can be detected together with
Wavelet decomposition and computational intelligence techniques. Some years later,
Ramalho [51] also used a similar methodology, but for short-circuit detection between turns
of stator coils in induction motors.

Royo [55] studied the application of the Fourier Transform (FT) in a squirrel cage
induction motor with three different types of faults: broken rotor bars, short-circuits between
turns and problems with the bearings. The authors used speed and current sensors for
validation and concluded that it is possible to distinguish the three types of failure from the

DOI: 10.33969/A1S.2019.11001

4 Journal of Artificial Intelligence and Systems



Sousa, Pedro H. Feij6 et al.

normal situation using the FT. However, when the generator, some frequency components
appear in the Fourier spectrum that may make it difficult to identify the normal conditions
from the faults.

De Oliveira [12] used the FT, based on the frequency spectrum theory of Penman [42],
and managed to identify 67% of short circuit failures, in 1.4% of turns, in an electric motor,
using a current sensor.

2.4. Concepts of the feature extraction methods proposed

Applied in the digital processing of information, the Fourier transform is one of the leading
mathematical tools, computationally implementable. The Fourier transform allows any
function to be expressed in relation to the functions of the sine-base [15]. A peculiarity of
the application of this transformation is that the function can be reconstructed with the inverse
process and suffer the loss of information. This feature allows you to work on the Fourier
spectrum and then return to the original spectrum of the function without losing signal
information [19]. After the digital computers emerged and the creation of the Fast Fourier
Transform (FFT) algorithm innovated the signal processing area [7]. There are several
implementations of the Fourier transform, for example, analysis, filtering, reconstruction,
and signal compression, as well as the extraction of characteristics for pattern recognition
[19].

Higher-Order Statistics (HOS) describes time domain signals as opposed to the Fourier
transform describing in the [37] frequency domain. Dwyer [14] was the first to propose
the use of Kurtosis as a statistical tool to indicate non-Gaussian components in signals.
This theory is the High-Order Statistics basis and it is described at the fourth statistical
moment. However, Antoni [1] emphasizes in his research the efficiency of this method to
characterize non-stationary signals. Mendel [37] pointed out that the advantage of HOS for
signals depends on the robustness (i.e. filtering) to Gaussian noise when using moments
higher than the second order. The features extracted from HOS are going to be skewness
and kurtosis, alongside variance and RMS values.

The Structural Co-occurrence Matrix (SCM) performs a structural analysis of discrete
signals, based on co-occurrence statistics, admitting existing connections between low-level
structures of two discrete signals in n-dimensions [49]. The main characteristic of this
extractor is to insert a prior knowledge in the analyzed signals, highlighting the detection of
details. At the output, a two-dimensional histogram is generated, where the SCM presents the
co-occurrences between the structures of the output signals [49]. In their article, the authors
presented the calculations of the method and proposed 6 characteristics to be extracted from
any signal in the entrance. In this work, SCM is the most contemporary extraction method
and is able to recognize detailed patterns from [52] signals.

2.5. Concepts on machine learning approaches for classification

Multilayer Perceptron (MLP) stands out among several artificial neural networks because it
presents powerful results in the modeling of input-output mappings typically encountered in
function approximation (regression) and pattern classification problems. Formed by a simple
system of interconnected neurons, the multilayer perceptron represents a non-linear mapping
between an input vector and an output vector. The sum of the weight-weighted inputs and
modified by an activation function results in the output signals, which are connected to the
neurons through the weights [23].

Multilayer Perceptron (MLP) stands out among several artificial neural networks because
it presents powerful results in the modeling of input-output mappings typically encountered
function approximation (regression) and pattern classification problems.

The Bayesian classifier uses existing classes in data to indicate the class of the new
samples, using probabilistic calculations [38]. Fisher [46] maximizes the posterior
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probability and classifies an unknown sample to the highest posterior probability class. We
can consider that in the Bayesian classifier the data is organized as a Gaussian probability
density function. Assuming that all attributes are statically independent, we use a diagonal
covariance matrix. The Naive-Bayes classifier uses the Russell [56] approach.

The Optimal Path Forest (OPF) classifier models the pattern recognition problem the
partitions of a graph in a given feature space. In this one, nodes represent feature vectors and
arcs connect all pairs of nodes, thus defining a complete graph [40]. This graph is formed
by nos, which are characteristic vectors and by arcs that connect all pairs of nodes. Among
the samples, there are arches with their respective weights. The weights vary according to
the distance established between their resource vectors.

The Support Vector Machines (SVM) classifier uses an optimization process, based
on the principle of structural risk minimization [65], establishing a separation function
that respects a threshold between generation and overfitting during the classification. The
nonlinearity cases in the decision surface can be solved by substituting the inner product of
weights and vectors for a kernel function [9], applied to extend the concept of hyperplane-
based classifiers for non-linear systems.

3. Methodology

In this study, we propose an [oT system architecture for wind farms as exhibited in Figure 1.
A microcontroller with the framework and peripheral sensors, among them the accelerometer
MEMs, are connected to the electric generator of the wind turbine and record the data of
vibration; this gives intelligence to our status monitoring system, so we call it an intelligent
system. The embedded system contains the Feature Extractor and the Classifiers, together
they represent an intelligent decentralized application because they are able to identify the
running status of the wind turbine generator.

This information about the state of health of the system is visualized online by the
responsible professionals, providing greater security and accuracy in the planning of
predictive and corrective maintenance and at the ideal moment for execution, with these
actions it is possible to reduce operating costs, costly failures and minimize displacements
unnecessary maintenance teams, especially in offshore installations.

This paper proposes an intelligent decentralized application, from the database acquired
by [53], we evaluate the performance of multiple classifiers on different feature extraction
techniques, with the aim of identifying the best combination of extractor / classifier. With
this information, the framework of fault detection is embedded in the system that emulates a
wind turbine, which will be described later. The other parts of the system are part of our
research as well. However, they are out of the scope of this paper and will be taken care of
in future publications. The next steps outline the important steps so we can develop predict
failures in wind turbines system.

3.1. The wind turbine system

We used the same wind turbine test-bench as our previous work, as reported in Reboucas
Filho [53]. The configurations consists of a wind turbine, using a Squirrel Cage Induction
Generator, prepared to insert short circuits from the most incipient, 1.41% of the stator
winding, to the more severe short applying with 9.26% of the amount of stator winding . And
other Squirrel Cage Induction Generator to emulate the force of the wind. This generator
has some advantages over other types, such as low maintenance costs and they represent
48% of all offshore installations [68, 71]. As we proposed before, the faults represent
incipient conditions, in general long before total insulation degradation, i.e., thousands of
seconds away.More details are provided in Rebougas Filho [53]. The faults considered in
our work represent the increasing of the magnitude of a short-circuit as follows: HI-1, HI-2,
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Figure 1. Dlagram of proposed approach.

HI-3, LI-1, LI-2 and LI-3. The types of faults are characterize in high (HI) and low (LI)
impedance.. The numbers 1, 2 and 3 are the percentage number of turns under short-circuits.

We imitate different conditions of wind-speed and energy generation, on the wind-
turbine test-bench, following the procedures described in Rebougas Filho [53]. After the
emulation of the acquisition system, there were 248 normal acquisitions and 1108 under
failure conditions, totaling 1356 acquisitions. The faults were divided into 6 different types.
In all experiments, the values of the frequency applied into the generator stator (fg) are
registered, as well as the voltage in the dc-bus of the frequency converter on the generator
side (V4.) and power generated (P). The f, ranges from 43.65 to 59.27 Hz, V. from 210 to
380 V.

3.2. The data acquisition system

The signals are acquired with a data acquisition system, developed using a National
Instruments hardware, the NI-USB6009 module, programmed to read 10 seconds of a
signal, sampled at 5 kHz, with 14-bits resolution. A LabVIEW interface running in a
microcomputer was developed especially for this work.

The accelerometer transducer used was the MMA7360L, developed by Semiconductor
[59]. It has a non linearity of 1%, sensitivity of 800mV /g, with a supply voltage of 3,3 V.
This equipment is a Micro Electro Mechanical system (MEMs), which is a really small
device (5 mm long), and is considered to be suitable to develop an IoT application for smart
detection of incipient faults on wind turbines. The MEMs device is also able to measure
three axis vibrations.

Other approaches in the literature have reported the use of this sensor to monitor rotating
machinery, such as [50, 51]. The authors were able to characterize vibration patterns of load
and misalignment in induction motors.
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3.3. Parametrization of feature extraction methods to build a dataset

To compose our datasets we used three different feature extraction methods: a one time-
domain method (i) the Higher-Order Statistics (HOS) and two frequency-domain methods
(ii) the Fourier Transform and (iii) the Structural Co-occurrence Matrix (SCM).

In the Fourier transform we used the amplitude of frequencies 0.5f,, 1.5f,,
2.5f4,3.0f,,5.0f, and 7f, as features, wherein f, is the fundamental frequency of the
vibration signal. In the HOS, skewness and kurtosis, along with variance and RMS values
are the features. In the SCM, we used the six original features proposed by Ramalho [49].
These feature extractors are applied to each of the axes. Furthermore we proposed using the
dc-bus voltage, Vg, and the generator frequency, f,, measurements as features for each
method. .

So, each feature extraction method resulted in one single dataset, and these were fed
into different classifiers. We also, created combinations, i.e., fusions, of these feature
extraction methods, increasing the dimensionality of the problem. All datasets, and their
dimensionalities are shown in Table 1. Further references in the text to any feature extraction
method is followed by the tag shown in table 1. For example, if we wish to refer to the
combination of Fourier and HOS as the feature extraction the initials FH shall be used.

All datasets! have seven classes, that is one Normal and six Faults. The number of
samples are also the same, 1356, and they split into the following classes: a Normal condition
with 248 samples, Fault HI-1 with 203, HI-2 with 179, HI-3 with 183, LI-1 with 177, LI-2
with 208 and LI-3 with 158 samples.

Table 1. All datasets created with the feature extraction methods, as well as their
dimensionalities and tags used in the text.

Feature sets Feature size  Tags
Fourier 23 F
Single Goertzel 23 G
HOS 14 H
SCM 17 S
Fourier + Goertzel 46 FG
Fourier + HOS 37 FH
Fourier + SCM 40 FS
Goertzel + HOS 37 GH
Goertzel + SCM 40 GS
Fusion | HOS + SCM 31 HS
Fourier + Goertzel + HOS 60 FGH
Fourier + Goertzel + SCM 63 FGS
Goertzel + HOS + SCM 54 GHS
Fourier + HOS + SCM 54 FHS
Fourier + Goertzel + HOS + SCM 77 FGHS

3.4. Classifier specifications and evaluation metrics

Similar to feature extractors, we adopted different types of classifiers with the objective
of finding the best configuration for the task of detecting incipient short-circuits in wind-
turbines, using vibration signals. Among the categories of existing techniques, we tested
the Naive-Bayes classifier, which uses probability and statistics concepts and classifies the
samples based on the probability density function. Its application in this case starts from the
assumption that the variables are random and allow themselves to be modeled by a Gaussian

IDatasets are available at https://github.com/navarmn/Wind_turbine_failure_prediction.
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probability density function [54]. The classifier based on the Statistical Learning Theory,
SVM, determines the class of samples with limits that increase the distance between them.
Initially this technique was created by Cortes and Vapnik to solve binary problems. But its
kernel machines are versatile and allow you to classify in a simpler way [39]. The MLP
artificial neural network, inspired by the human neural network, it can be represented by a
non-linear vector in the input vector and another vector in the output vector. Its learning
takes place in the training phase, based on the backpropagation of the error [36]. The
classifier using graph theory, OPF, is a non-parametric, multi-class, low cost computational
classifier that uses a simple mathematical approach and is based on graph theory [40].
And a distance-based classifier, the KNN, uses one of the simplest and oldest methods for
the classification pattern. This method classifies each unlabeled sample according to the
majority of its nearest k in the training set [10].

To choose the best hyperparameters 10-fold cross-validation, with the random search,
as proposed by Bergstra and Bengio [6] were used. Three types of kernels for the SVM
classifier, the linear, polynomial and Radial Basis Function (RBF) were used. The range
used for y was [2715,23%] and [273,2!] for C. For other types of kernels the same range as
C was used. The MLP was trained with one hidden layer using ReLU activation function
in all hidden neurons and softmax in the output layer, defined by the cross-entropy cost
function, and optimized by the Adam algorithm [28]. In MLP, the number of neurons in the
hidden layer ranged from 2 to 500. The Gaussian probability density function was applied in
the Naive-Bayes classifier. The number of neighbors of KNN were tested within the range
of 3 to 50. The OPF was tested with eight distance measures. The best configurations found
for all classifiers and their tags are shown in Table 2.

After the feature extraction step, 15 datasets were created from the four extraction
techniques. We preprocessed all databases equally. The training and the test datasets were
normalized using the same measures (mean zero and unit variance). And to access the
performance of all classifiers a Monte-Carlo simulation with fifty hold out cross-validation
set to 80/20 was applied.

The metrics chosen to evaluate our model were accuracy and the confusion matrix.
Accuracy (Acc) is measured in percentage and indicates which is the most promising result,
ie, the most successful / extractor combination is the one with the nearest Accuracy of 100%.
The confusion matrix, also measured in percentage, more specifically illustrates in which
situation the extractor / classifier combination sets or misses the operation status of the
generator. The highlighted line on the diagonal represents the hit percentage, that is, this
line highlights the intersection of the correct operating statuses, the closer to 100% the more
accurate the extractor / classifier combination was. And the sum of each line is set to 100
%, as it totalizes the total sample number of each generator status. The values highlighted
in light gray are false negatives and dark gray are false positives. False negatives are when
the classifier indicates that the status is faulted but in fact it is in normal operation. And the
false positive is when classifier informs that it is working normal but in fact it is faulted.

The experiments were computed on a PC Intel i7 running at 3.1 GHz and 8Gb of RAM
using a Linux Ubuntu operating system installed on a solid-state drive. We coded the
extractors and the classifiers in the Python language.

4. Results and Discussions

Since the purpose of this work is to provide a IoT-based framework for smart systems on
wind farms, we had to access the performance of different classifiers with different feature
extraction methods. We would like to emphasize that all the results reported are on the
test set, but the results on the training set were taken into consideration, as well. We paid
attention to these results to evaluate overfitting of our models, but due to limitations of space
we cannot exhibit them here.

Table 3 show the accuracy performance of all classifiers with the four feature extraction
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Table 2. The best configurations found for all classifiers after a random search.

Classifier Setups Tags
Bayes Gaussian B
KNN k=1 K1
KNN k=3 K3
KNN k=5 K5
MLP IL/HL/OL Ml
MLP IL/HL/OL M2
OPF Bray-Curtis OB
OPF Canberra oC
OPF Chi-Square OCS
OPF Euclidean OE
OPF Gaussian OG
OPF Manhattan OMN
OPF Squared Chi Squared OSCS
OPF Squared Chord 0OSC
SVM Linear SL
SVM Poly SP
SVM RBF SR

methods used. Among the 17 classifiers, the four best combinations were HOS-SR, HOS-
SP, HOS-Bayes and HOS-MLP2, with 94.44%, 93.49%, 91.76% and 91.20% accuracy,
respectively. Among all the types of SVM, the RBF was better in all cases. The results
using the SCM as the feature extractor obtained, in general, 10% less than HOS for this
application. While using Fourier and Goertzel, the best combination was 15% less than the
best with HOS. The HOS demonstrated to be the best among all these feature extraction
methods. Also we achieved better results with the SR classifier than [53]. For the same
problem they achieved 89.14% of overall accuracy.

The performance of SVM using RBF and the Polynomial kernel is quite low, so in
further analyses we only used the RBF kernel. As we wanted to evaluate different machine
learning paradigms, we choose SVM, Bayes and MLP for evaluations. Table 4 presents the
confusion matrix of these classifiers. The sum in each line is 100%, so the values of the true
positives represent the accuracy per class.

A result of 98.93% of all Normal conditions were correctly identified by HOS-SR,
and this was the same with Bayes and MLP. A look into all the confusion matrices shows
the accuracy on fault classes are, in general, lower than 80%. However, most of the
misclassifications are the following: the HI-1 class was mostly mistaken for LI-1; HI-2 for
LI-2 and HI-3 for LI-3. The pattern is the same in all classifiers. These results ratify the
affirmative of Reboucas Filho [53], that knowing if a fault is of higher or lower impedance
is more relevant to the classifier than the amount of coils turns under a short-circuit.

However, we must highlight that all faults were incipient, they are conditions very close
to normal. Despite that, very few of them were classified as Normal. Since the problem
we are evaluating in our work is to identify the status of the wind turbine, false positives
and false negatives rates are more important than accuracy. False positives, i.e. type I error,
represent normal conditions which are classified as fault, this represents an unnecessary cost
to the wind farm, since the maintenance team has to stop the machine to inspect it. This
error also gives discredit to the IoT expert system. On the other hand, false negatives, i.e.
type II error, are fault conditions classified as Normal, which are particularly bad, because it
means the system is mostly like to allow the wind turbine to operate under a short-circuit
condition.

Taking these points under consideration, MLP is discard for further analyses as it has
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more false negatives than Bayes and SVM. HOS-SR marked about 1.84% of false negatives,
while HOS-Bayes marked, 16.48%. On the other hand HOS-Bayes produced less false
positives than HOS- SR, with 0.4% and 1.07% respectively. So, HOS-Bayes is better to
mitigate unnecessary maintenances and HOS-SR is better to prevent silent degradations.

The methodology proposed for mitigating the false positives and negatives used by [53]
is based on ensemble learning of multiple MLPs, trained with different groupings of faults.
The authors were able to identify 1.41% of turn short-circuits with 99.93% accuracy with
less than 2% false negatives and 0% false positives. In our approach, the average accuracy
of classes HI-1 and LI-1 was 81.69% for HOS-SR. But, for false negatives the HOS-Bayes
was better, since it had only 0.4%, compared with the best results of [53] of 2%.

Table 3. Results of all classifiers for the feature extraction methods used. The metrics
evaluated are accuracy (Acc) and the values in bold are the best configurations.

Classifiers Extractors - Acc(%)
Fourier Goertzel HOS SCM

B 77.77+0.14  76.06+0.19 91.76:+0.06 84.89+0.22
K1 79.73+0.10  75.32+0.21 89.80+0.03 85.5140.55
K3 78.88+0.25 76.11+£0.57 89.84+0.54 85.68+0.54
K5 79.23+0.37 75.64+0.38 89.33+0.08 85.81+0.48
M1 78.55+0.66 76.74+0.28 88.54+2.83 84.87+2.73
M2 79.43+0.62 76.51+0.47 91.20+1.42 84.90+3.34
OB 76.25+0.48 75.87+£0.56 75.53+£0.51 78.7240.58
ocC 77.60+0.74 75.90+0.30 86.81+0.47 82.08+0.47
0OCS 75974022 75.60+0.24 75.73+£0.30 75.95+0.64
OE 79.23+0.53 76.02+0.53 89.28+0.71 85.00+0.48
oG 7891+0.36 76.22+0.43 89.74+0.41 84.92+0.51
OMN 79.78+0.49 76.37+0.39 89.85+0.68 84.36+0.32
OCSC 78.19+0.33  76.02+0.40 88.24+0.65 84.56+0.25
0SC 75.49+0.38 75.26+0.54 74.75+1.12 76.12+0.31
SL 78.63+0.51 76.76+0.27 91.13+£0.59 85.88+0.84
SP 80.294+0.58 76.46+0.57 93.49+0.86 85.81+0.73
SR 80.76+0.44 76.59+0.57 94.44+0.36 86.43+0.62

Nevertheless, in order to improve the system reliability we proposed a different
approach to [53], who wanted to use the same feature extraction methods, but concluded
that Fourier was more suitable for the application. However, they did not investigated
multiple combinations of features. We raised the hypothesis that, combining multiple
feature extractions might improve separability between classes, due to the high
dimensionality, as discussed below.

4.1. Results using multiple feature extraction

Since we intended to improve our system we will use the results until now as a baseline,
in which case accuracies no better than 90% would be considered unacceptable for this
application. We kept the same settings for the experiment as before, as describe in Section
34.

The attributes of the extractors were merged into pairs, in order to improve the accuracy
of all classes. In the Table 5, the results of all the classifiers on these datasets are presented.
The results of the fusion of the Fourier extractors with Goertzel were not included because
the individual accuracy results of these extractors were not satisfactory when compared to
the others.

The combination of the HOS and SCM extractors, which obtained the two best accuracy
results in the individual results, with the SR classifier reached an accuracy of 94.56%,
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Table 4. Average confusion matrix for the feature extractors HOS and SVM, Naive- Bayes
and MLP classifier. The values are expressed in percentage, and the sum of each line is set
to 100%. The values highlighted in light-gray are the false negatives and in dark-gray are
the false-positives.

. HOS-SR
Predict/True |—q T HLI HI-2 HI-3 I
Normal 98.93% [0 0% -—-_-_-
HI-1 0%  82.46%  2.30% 0% 984%  541% 0%
HI-2 1.11%  759% 60.56% 2.41%  574% 22.59% 0%
HI-3 0% 0% 1.09% 7327% 0% 6.55%  19.09%
LI-1 074%  113%  7.04% 0%  80.93% 0% 0%
LI-2 0% 413%  13.17%  3.17% 0%  78.89% 0.63%
LI-3 0% 0% 0% 17.61% 0% 043%  81.96%

. HOS-Bayes
Predict/True |—q {1 HI-2 HI- 3y -
Normal 99.6% 0% 0% -—-—-—r
HI-1 443%  62.62% 11.48% 098% 1557%  4.92% 0%
HI-2 630%  426% 60.56%  4.81% 0%  2407% 0%
HI-3 0% 1.82%  1.09% 5273% 0%  14.73%  29.64%
LI-1 481% 1981% 1481% 0%  60.56% 0.0 0%
LI-2 048%  921%  556%  4.76% 0%  78.89% 1.11%
LI3 0% 0% 0%  2522% 0% 271%  72.61%

. HOS-MLP2
PredictTrue T LT HI-2 HI-3 LI L2 LI-3
Normal 96.00%  0.53%  240% 0.13% 040% 0%  0.53%
HI-1 18.85% 60.00%  2.13%  0.66% 13.28% 4.92%  0.16%
HI-2 12.04%  4.63% 58.89%  3.70%  2.22% 17.96%  0.56%
HI-3 10.73% 0% 273%  58.00% 036%  71.82%  20.36%
LI-1 1537% 11.11%  241%  0.19% 7093% 0% 0%
LI-2 13.97% 381% 1032% 635%  0.16% 64.60%  0.79%
LI3 11.96%  022%  022%  18.48% 022%  1.52%  67.39%

slightly better than the result shown before. The SVM and MLP classifiers achieved a hit
rate above 90% in all fusions where the HOS extractor was present. And, when the HOS
extractor was not present in the fusions, the SVM and MLP classifier accuracy rate had an
average of 87%, which represents a good value if compared to other classifiers, for example
the OB, which presents an average of 75% accuracy.

The results of fusions of three and four features are shown in Table 6. We highlight the
HOS results, because all datasets built with HOS maintained an accuracy rate above 90%,
again in the SVM and MLP classifier. And, in the fusions where HOS was not present, the
average accuracy of SVM and MLP classifiers reached 86.5%. The SR classifier achieved
the highest hit rate among all results, with 94.09% when combined with the GHS fusion.
And again, the HOS and SCM extractors are present in the most successful combination.

Considering the three tables presented, the best combinations of feature extraction
method and classifiers are HOS-SR, with 94.44%, HS-SVM-RGB with 94.56% and GHS-
SR with 94.09%. The SR classifier is present in the best results in all the fusions of extractors,
and the HOS extractor was also present in the best results. However, the best result was
when the HOS and SCM extractors were merged with the SR classifier.

Despite the results discussed above, the combination of multiple feature extraction
methods was not conclusive for us. So, we cannot affirm that it improved the performance
of the classifier.
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Table 5. Results of all classifiers on datasets created by the fusion of feature extractors in
pairs. The metrics evaluated are accuracy (Acc) and the values in bold are the best pairs.

Classifiers Fusion of 2 Extractors
FH FS GH GS HS

B 89.52+0.48 84.07+0.27 76.90+0.45 76.874+0.30 76.8940.52
K1 85.39+0.53 82.37+0.75 87.64+0.43 82.50+0.27 88.62+0.72
K3 85.36+0.38 83.28+0.03 86.97+0.42 86.714+0.29 88.8440.06
K5 85.23+0.22 82.69+0.02 87.50+0.24 83.534+0.18 88.8440.10
M1 91.37+£0.87 86.314+0.57 90.96+0.55 90.96+0.55 92.40+0.95
M2 92.08+£0.56 86.424+0.70 92.02+0.80 85.63+0.78 93.43+0.42
OB 77.46+£0.76  77.73+0.57 76.81+£0.22 77.77+0.39 80.81+0.22
oC 82.45+0.60 80.82+0.50 82.53+0.55 79.65+0.37 86.314+0.56
OCS 75.244+0.73  75.02+0.42 75.23+0.48 75.15+0.39 76.52+0.53
OE 85.91+0.73 82.53+0.53 86.54+0.54 82.454+0.55 88.72+0.77
0G 85.89+0.65 82.45+0.59 86.49+0.57 82.43+0.59 89.184+0.26
OMN 87.81+0.61 83.24+0.67 87.37+0.29 82.53+0.19 88.88+0.33
OCSC 83.82+0.43 81.35+0.29 84.68+0.42 81.23+0.42 88.38+0.64
0SC 73.31+£0.32  75.20+0.62 73.36+0.41 75.48+0.57 74.90+0.61
SL 91.33+0.67 85.90+0.54 90.74+0.53 86.09+0.61 91.224+0.46
SP 92.75+0.48 87.61+0.66 93.05+0.65 87.57+0.55 93.92+0.26
SR 92.294+0.59 87.65+0.66 93.67+0.50 88.48+0.42 94.56+0.40

Table 6. Results of all classifiers on datasets created by the Fusion of three and four
extractors. The metrics evaluated are accuracy (Acc) and the values in bold are the best
combinations.

Classifiers Fusion of 3 and 4 Extractors
FGH FGS GHS FHS FGHS

B 75.95+0.48 76.60+0.65 85.28+2.21 77.054+0.59 84.33+2.20
K1 84.14+£0.37 82.54+0.62 86.97+0.26 85.73+0.46 84.74+0.66
K3 84.59+0.52 82.914+0.61 87.40+0.15 85.67+0.48 84.63+0.33
K5 84.80+0.84 82.36+0.44 87.46+0.26 85.43+0.23 85.224+0.37
Ml 90.694+0.74 86.06+0.36  92.49+0.60 92.10+£0.44 91.57+0.62
M2 91.22+0.38 86.20+1.01 92.39+0.48 92.424+0.69 92.16+0.54
OB 77.63+0.38 77.92+0.46 79.64+0.40 78.994+0.76 78.60+0.28
ocC 81.38+£0.29 79.97+0.54 83.57+0.57 83.11+0.35 82.344+0.48
OCS 75.58+0.59 75.86+0.45 75.79+0.49 75.68+0.42 75.36+0.61
OE 84.224+0.65 81.344+0.47 87.03+0.66 86.34+0.44 85.374+0.38
oG 84.26+£0.59 81.56+0.31 86.49+0.58 80.33+0.35 85.12+0.60
OMN 86.11+0.47 82.754+0.89 87.77+0.47 87.70+0.48 86.93+0.53
OCSC 82.96+0.37 80.544+0.66 85.39+0.49 84.53+0.65 83.63+0.65
0SC 73.624+0.41 75.51£0.35 74.45+£0.28 74.72+0.26 74.83+0.39
SL 90.96+0.71 85.53+0.49 91.12+0.54 90.964+0.38 90.7140.49
SP 93.14+0.73 87.58+0.65 93.64+0.42 93.04+0.57 92.94+0.62
SR 92.474+0.51 87.36+0.58 94.09+0.33 92.87+£0.69 92.74+0.23

5. Conclusions

We presented a IoT-based framework for wind farms to improve their maintenance routines.
Our system is based on an intelligent decentralized application. In this paper we showed a
design of different strategies to identify incipient faults of short-circuits in wind turbines.

Vibration signals were demonstrated to be suitable for this purpose, compared to other
approaches in the literature that use electrical current. We were able to identify Normal
conditions of the wind turbine with 98.93% of accuracy. We also, reduced the false positives
rate to 0.4% and false negatives to 1.84%.

Among all combinations HOS is highlighted as the best approaches for this task. SVM
with the RBF kernel is the best approaches, however the Naive-Bayes and MLP classifiers
are also relevant. In future works we aim to combine an ensemble of multiple learning,
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combining multiple information from different sensors. Another goal for future work is to
apply this structure, based on Iot, to real proportions and considering the challenges of this
technology, for example, type of connectivity, which is the power source of reliable actuators
and sensors and the standardization of networks and sensors for secure integration. Install
a microcontroller and its peripherals in a wind turbine and set the framework to identify
incipient short-circuit failures and distribute the status information of the wind turbine to
devices connected to the network in the shortest time. A review of the devices will be
necessary to identify the limitations and advantages of the types of connections, for example,
RFID, Wi-fi, Bluetoooh and ZigBee, and to allow connection with other technologies such
as GSM, 3G and LTE.
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