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Abstract
This study addressed the output regulation issue of linear heterogeneous multi-agent systems
under switching topology. All agents excluding the external system are divided into two
groups with measurable agents or unmeasurable agents. The agents’ states in the first
group can be available for measurement while the agents’ states in the second group are
unmeasurable. For the second group, a full-order Luenberger observer is devised to recover
these agents’ states. Moreover, there are some agents that can not receive the information
from the exosystem directly, thus, a dynamic compensator is constructed for these agents.
Based on the proposed observer and compensator, a hybrid feedback control strategy is
put forward to settle the output regulation issue. Furthermore, the information interaction
among agents is expressed by the switching topology, and the topology is assumed to be
jointly connected. Finally, two numerical examples are given to illustrate the feasibility of
the theoretical results. The results show that whether the states are measurable or not, the
proposed control strategy can address the output regulation issue of linear heterogeneous
MASs under switching topology. Moreover, the comparative experiment indicates that our
method obtains superior performance in terms of convergence speed, and is more efficient
in dealing with practical problems.

Keywords
Full-order observer, Dynamic compensator, Hybrid feedback controller, Switching topology,
Output regulation

1. Introduction

Over the last few decades, the efficient hierarchical control of industrial plants has achieved
remarkable benefits in reducing energy consumption, and improving operational efficiency.
More concretely, the industrial plants are generally considered as the large-scale systems
with high complexity, large delay, and strong uncertainty. Industrial processes can be divided
into several subsystems with different properties, such as energy or information flows [1, 2].
When the controlled plant variables increase, the cooperative control of industrial plants
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becomes more and more challenging. In order to solve this problem, many researchers
regard industrial subsystems as agents, thus the industrial systems can be considered as
multi-agent systems (MASs). The cooperative control of MASs has attracted great attention
and has been applied in many fields, such as smart grid, vehicle systems, sensor networks,
and mobile robots [3–6].

Due to the uncertainties, complexity, diversity and instability of MASs, output regulation
has become an important and challenging direction in cooperative control [7, 8]. Generally
speaking, the application objects of the multi-agent distributed output regulation control can
be multiple wheeled mobile robots, mass-damper-spring systems, networked aircrafts, and so
on [9–11]. These objects can be regarded as agents of MASs, and their structures are usually
different with each other. Moreover, in practice, it is difficult to measure all states of objects
due to high cost or technical constraint. Furthermore, the information interaction among
all objects delivered by the communication topology often changes during the moving of
these objects. Therefore, it is an urgent problem to design the distributed control protocol
and enable these objects to achieve the output regulation control under above circumstances.
Motivated by this, this paper focuses on the distributed output regulation issue of linear
heterogeneous MASs with partial unmeasurable agents under switching topology.

Several profound results, which can build the theoretical framework of output regulation
control for MASs, have been obtained, see [12–17] and the references therein. Specifically,
the output regulation problems for general linear MASs were considered in [12, 13]. As
shown in [12, 13], the system matrices A and B associated with linear MASs are
homogeneous, i.e. the system matrices A and B of all agents are identical. However, such
assumption is too restrictive for many real applications. In this case, the output regulation
problems of linear heterogeneous MASs were studied in [14–17]. It can be observed that
the system dynamics of all agents are heterogeneous, which have addressed the issues
of [12, 13]. Moreover, it should be noted that the system states of all agents in [12, 13] play
a key role in their control protocols. For this reason, these control strategies are developed
on a common assumption that the states of agents can be measured.

In many practical occasions, not all agents’ states are measurable due to technical
constraint or external disturbance. In this case, several profound results on state observers
have been proposed to recover the agents’ states [18–23]. For instance, the state observer
was put forward for unmeasurable states, and the dynamic output feedback controller based
on state observer was designed in [19]. The distributed control law based on adaptive
distributed observer was presented for linear MASs [21]. Moreover, a passivity-based
distributed observer was designed for each agent to estimate the state information that cannot
be available for measurement [23]. From the review of the aforementioned works with
state observers, it can be seen that the states of all agents are assumed to be unmeasurable.
Nevertheless, in many real-world cases, not all agents are unmeasurable, namely, partial
agents are measurable. To our knowledge, there are few reported results on output regulation
issue for partial unmeasurable agents, which forms the first motivation of this paper.

Although the output regulation problems for linear MASs with state observers have
been investigated [18–23], they are developed on fixed topology. However, in the actual
scenario, the communication topologies are often variable. Therefore, the research of
output regulation issue under switching topology is more meaningful [24–27]. The works
in [24–26] investigated the cooperative output regulation problem of heterogeneous linear
MASs under switching topology. However, it is supposed that the states of all agents can be
measured. In addition, the system dynamics associated with linear heterogeneous MASs
in [26] have the same dimensions. Moreover, the cooperative output regulation issue with
state observer under switching network was studied in [27], nevertheless, all agents were
assumed to be unmeasurable. To authors’ knowledge, the output regulation issue of linear
heterogeneous MASs with partial unmeasurable agents under switching topology has not
been addressed, which forms the second motivation of this paper.

The main contributions of this note are summarized as follows. Firstly, the partial
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unmeasurable agents are considered in the present work for the first time, while the
previous works studied the MASs with all measurable dynamics [12–17] or all
unmeasurable dynamics [18–23]. Therefore, the case considered in this study is more
general and realistic. Secondly, compared with the previous works [12–23] that were
developed on fixed topology, this paper considered the switching topology, which is more
flexible and feasible. Thirdly, different from the existing methods, the present work takes
the points including heterogeneous MASs with different dimensions, partial unmeasurable
agents and switching topology into account at the same time. Therefore, the current result is
more general in contrast to the case where all measurable states [12–17], all unmeasurable
states [18–23], homogeneous system dynamics [12, 13], heterogeneous system dynamics
with the same dimensions [26], or fixed topology [12–23] are considered. Finally,
compared with the existing method [17], the proposed method obtains superior performance
in terms of convergence speed, and is more efficient in dealing with practical problems.

The rest of this study is organized as follows. Some basic conception of the
communication topology and the system dynamics are introduced in Section 2. The hybrid
feedback controller is designed in Section 3. The main results are presented in Section 4. In
Section 5, two simulation examples are provided to verify the feasibility of the theoretical
results. And in Section 6, the conclusion is finally given.

Notations: The symbols R, Rn and Rn×m indicate the set of real numbers, n-dimension
vector space and n×m matrix space, respectively. Z+ and N indicate the positive integers
set and natural numbers set, respectively. For matrix A, AT is the transpose of A. The
0 indicates the zero matrix with appropriate dimensions. 1N denotes the column vector
(1,1, . . . ,1)T . Notations A⊗B and A⊕B are the Kronecker product and Kronecker sum of A
and B, separately. If A ∈ Rn×n and B ∈ Rm×m, the Kronecker sum A⊕B is given as A⊕B =
(A⊗ Im)+ (In⊗B). The eigenvalues of A⊕B are λi + µ j, i = 1,2, . . . ,n, j = 1,2, . . . ,m,
where λi is the eigenvalue of A and µ j is the eigenvalue of B. Moreover, σ(A) is used to
indicate the spectrum of A.

2. Preliminaries and problem formulation

2.1. Algebraic graph theory

Some basic definitions and results of the communication graph are described in this
subsection and the details can be referred to [28].

The communication topology structure can be described by the digraph G = {V ,E }
with a node index set I = {0,1,2, . . . ,N}, a vertex set V = {v0,v1, . . . ,vN} and an edge
set E = {ei j = (vi,v j) ∈ V ×V }. Here, vi(i = 1,2, . . . ,N) denotes the i-th agent and v0
denotes the exosystem. The neighborhood of the i-th agent is expressed as Ni = {v j ∈ V :
(vi,v j) ∈ E }. A = [ai j] with aii = 0 (i, j ∈I ) denotes the weighted adjacency matrix. If
the edge ei j = (vi,v j) ∈ E , then ai j > 0, else ai j = 0. Note that the exosystem merely sends
information to agents, i.e., a01 = a02 = · · ·= a0N = 0, and if exosystem sends information
to agent i, ai0 > 0, else ai0 = 0. Therefore, the adjacency matrix can then be defined as

A =

(
0 0

A01N As

)
,

where A0 = diag{a10,a20, . . . ,aN0} and As = [ai j], i, j = 1,2 . . . ,N. Moreover, the in-degree
and out-degree of agent i are given

degin(vi) =
N

∑
j=0

a ji, degout(vi) =
N

∑
j=0

ai j.

The degree matrix is defined as D = diag{d0,d1, . . . ,dN} with di = degout(vi).
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Correspondingly, the Laplacian matrix is given

L = D−A =

(
0 0

−A01N H

)
,

where H =A0+Ls and Ls =As+Ds with Ds = diag{d1,d2, . . . ,dN}. Moreover, if there
is one node that has directed paths to other different nodes, then the digraph G has a directed
spanning tree.

Since the communication graph often varies in actual scenario, the switching topology
is discussed in this paper. Assume that there are l possible topologies, denoted as G` with
` belonging to the set {1,2, . . . , l}, l ∈ Z+. Given the time interval [tk, tk+1),k ∈ N, where
t0 = 0 and tk+1− tk ≤ T , there exists subintervals

[t0
k , t

1
k ), . . . , [t

j
k , t

j+1
k ), . . . , [tmk−1

k , tmk
k ), tk = t0

k , tk+1 = tmk
k ,

satisfying t j+1
k − t j

k ≥ τ , 0≤ j ≤ mk−1 with positive dwelling time τ and positive integer
mk. The piecewise-constant switching signal σ(t) : [0,+∞)→ ` is defined to describe the
changes in topological graphs. Obviously, Gσ(t) ∈ G` = {G1,G2, . . . ,Gl}. In [t j

k , t
j+1
k ), the

graph Gσ(t) is fixed and denoted by Gk j and in [tk, tk+1), some or all Gk j, j = 0, . . . ,mk−1
can be disconnected.

For each graph Gσ(t), Aσ(t) = [aσ(t)
i j ]∈R(N+1)×(N+1), Dσ(t) = [dσ(t)

i ]∈R(N+1)×(N+1) and

Lσ(t) = Dσ(t)−Aσ(t), respectively. Moreover, for each subgraph G
σ(t)
s , A

σ(t)
s = [aσ(t)

i j ] ∈
RN×N , D

σ(t)
s = [dσ(t)

i ] ∈ RN×N and L
σ(t)

s = D
σ(t)
s −A

σ(t)
s , respectively. Furthermore,

A
σ(t)

0 = diag{aσ(t)
10 ,aσ(t)

20 , . . . ,aσ(t)
N0 } and Hσ(t) = A

σ(t)
0 +L

σ(t)
s .

The following assumption and lemma are key condition to ensure output regulation
under switching topology.

Assumption 1. The union of the digraphs
⋃

t∈[tk,tk+1)
Gσ(t) has a directed spanning tree with

leader as its root node.

Lemma 1. ([29]) If Assumption 1 holds, the matrix HΞ = ∑
l
i=1 Hi is positive definite.

2.2. Agent’s dynamics

In this paper, the MASs containing N agents are taken into account. The i-th agent has the
following dynamics

ẋi(t) = Aixi(t)+Biui(t)+Eiω(t),

yi(t) =Cixi(t), i = 1,2, . . . ,N,
(1)

where xi(t) ∈ Rni and yi(t) ∈ Rp are the state and measurement output of agent i, separately.
ui(t) ∈ Rmi is the control protocol. And Eiω(t) is the disturbance or reference input of the
i-th agent, generated by the exosystem

ω̇(t) = A0ω(t),

y0(t) =C0ω(t),
(2)

where ω(t) ∈ Rq is the state of the exosystem and y0(t) ∈ Rp is the reference output of the
i-th agent.

The regulation error is defined as

ei(t) = yi(t)− y0(t) =Cixi(t)−C0ω(t). (3)

The main purpose of this study is to address the output regulation issue of linear
heterogeneous MASs with partial unmeasurable agents under switching topology. We need
to design the Luenberger observer and control protocol such that the outputs of all agents
tend to the output of the exosystem, i.e., ei(t) = yi(t) − y0(t) = Cxi(t) − C0ω(t)
→ 0, i = 1,2, . . . ,N as t→ ∞.
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3. The design of the control protocol

In practical occasions, not all agents’ status information is measurable, thus, it is meaningful
to design an observer to estimate these unmeasurable agents. In general, we assume that the
states of the first k agents can be measured, and the rest can not be measured. In this case, an
observer that can asymptotically estimate the unmeasurable states xi, i = k+1,k+2, . . . ,N
needs to be designed. This paper provides a full-order Luenberger observer, as follows

˙̂xi = Aix̂i +Biui +Eiω +Fi(Cix̂i− yi), i = k+1,k+2, . . . ,N, (4)

where the matrix Fi is the gain matrix.
Since there are some agents that cannot receive the information from the external system,

therefore, it is necessary to design the dynamic compensator to make all agents either receive
information directly from the external system, or receive the compensator information of
the exosystem. The dynamic compensator is designed as

η̇i(t) = A0ηi(t)+ρ( ∑
j∈Ni

aσ(t)
i j (ηi(t)−η j(t))+aσ(t)

i0 (ηi(t)−ω(t))), (5)

where ρ is a regulation factor to be designed.
Based on the defined observer and dynamic compensator, a hybrid state feedback

controller is designed as

ui =

{
K1ixi +K2iηi i = 1,2, . . . ,k,
K1ix̂i +K2iηi i = k+1,k+2, . . . ,N,

(6)

where K1i ∈ Rmi×ni and K2i ∈ Rmi×q are the gain matrices.
Let x̄ = (xT

1 ,x
T
2 , . . . ,x

T
k )

T , η = (ηT
1 ,η

T
2 , . . . ,η

T
N ), ω̃ = 1N ⊗ ω and

x̃ = (xT
k+1,x

T
k+2,x

T
N , x̂

T
k+1, x̂

T
k+2, . . . , x̂

T
N). The combination of the Eqs. (1), (4) and (6) is

˙̄x = Āox̄+ B̄oη + Ēoω̃,

˙̃x = Ãox̃+ B̃oη + Ẽoω̃,

η̇ = (ρHσ(t)⊕A0)η−ρ(A
σ(t)

0 ⊗ Iq)ω̃,

(7)

where Āo = Ā+ B̄K̄1, B̄o = (B̄K̄2,0), Ēo = (Ē,0), Ão =

(
Ã B̃K̃1
−F̃C̃ Ã+ B̃K̃1 + F̃C̃

)
, B̃o =

12⊗ (0, B̃K̃2), and Ẽo = 12⊗ (0, Ẽ), with

Ā = diag{A1,A2, . . . ,Ak}, B̄ = diag{B1,B2, . . . ,Bk}, Ē = diag{E1,E2, . . . ,Ek},
K̄1 = diag{K11,K12, . . . ,K1k}, K̄2 = diag{K21,K22, . . . ,K2k}, Ã = diag{Ak+1,Ak+2, . . . ,AN}
B̃ = diag{Bk+1,Bk+2, . . . ,BN},C̃ = diag{Ck+1,Ck+2, . . . ,CN}, Ẽ = diag{Ek+1,Ek+2, . . . ,EN},
F̃ = diag{Fk+1,Fk+2, . . . ,FN}, K̃1 = diag{K1(k+1),K1(k+2), . . . ,K1N},
K̃2 = diag{K2(k+1),K2(k+2), . . . ,K2N}.

Let ζ = (x̄T , x̃T ,ηT )T and

Ξ
σ(t)
o =

 Āo 0 B̄o
0 Ão B̃o
0 0 ρHσ(t)⊕A0

 , ϖ
σ(t)
o =

 Ēo
Ẽo

−ρ(A
σ(t)

0 ⊗ Iq)

 , (8)

the Eq. (7) can be rewritten as

ζ̇ = Ξ
σ(t)
o ζ +ϖ

σ(t)
o ω̃. (9)
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Definition 1. The linear heterogeneous MASs (1) and (2) are said to achieve output
regulation, if the hybrid control protocol (6) is designed such that the following conditions
hold
(a) If ω(t) = 0, system (9) is asymptotically stable.
(b) The solution (xi(t),ω(t)) of the following equation

ζ̇ = Ξoζ +ϖoω̃,

ω̇ = A0ω

satisfies
limt→∞ei(t) = limt→∞(Cixi(t)−C0ω(t)) = 0, (10)

for any initial value xi(0) and ω0(0). Here, Ξo = ∑
l
i=1 Ξi

o and ϖo = ∑
l
i=1 ϖ i

o.

4. Main results

Before giving the main results, the following basic assumptions are first provided.

Assumption 2. The pair (Ai,Bi) is stable.

Assumption 3. The pair (Ci,Ai) is detectable.

Assumption 4. The eigenvalues of A0 are in the complex left half plane.

Assumption 5. All systems satisfy the transmission zeros condition, i.e.

Rank
(

Ai−λ Ini Bi
Ci 0

)
= ni + p for ∀λ ∈ σ(A0).

Lemma 2. (Cauchy’s Convergence Criterion [30]): For arbitrary ε > 0, there is Mε ∈ Z+

such that for arbitrary k > Mε , |V (tk+1)−V (tk)|< ε , then the sequence V (tk),k = 0,1,2, . . .
converges.

Theorem 3. The matrices Āo and Ão (defined in Eq. (7)) are Hurwitz if Assumptions 2 and
3 hold.

Proof. If the matrix pair (Ai,Bi) is stabilizable and (Ci,Ai) is detectable, then there exist
matrices K1i and Fi such that Ai + BiK1i and Ai + FiCi are Hurwitz. It is obvious that
Āo = Ā+ B̄K̄1 is Hurwitz when Ai +BiK1i is Hurwitz.

Let

S =

(
I 0
I I

)
, Ãos =

(
Ã+ B̃K̃1 B̃K̃1

0 Ã+ F̃C̃

)
,

then we have Ão = SÃosS−1. Hence, Ão is Hurwitz if and only if Ãos is Hurwitz. Ãos is
Hurwitz when Ã+ B̃K̃1 and Ã+ F̃C̃ are Hurwitz simultaneously. Moreover, Ã+ B̃K̃1 and
Ã+ F̃C̃ are Hurwitz when Ai+BiK1i and Ai+FiCi are Hurwitz. This completes the proof.

Theorem 4. If Assumptions 1–3 are satisfied, and there are matrices Πi and Γi satisfying
the following regulator equations:

ΠiA0 = AiΠi +BiΓi +Ei,

0 =CiΠi−C0,
(11)

with σ(A0)⊂ jR, then the output regulation issue can be addressed by the hybrid feedback
controller (6).
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Proof. Do the following coordinate transformation

χi = xi−Πiω, i = 1,2, . . . ,k,
χ̂i = x̂i−Πiω, i = k+1,k+2, . . . ,N,

where Πi is the solution of Eq. (11).
Let χ̄ = (χT

1 ,χ
T
2 , . . . ,χ

T
k ) and χ̃ = (χT

k+1,χ
T
k+2, . . . ,χ

T
N , χ̂

T
k+1, χ̂

T
k+2, . . . , χ̂

T
N ), then

χ̄ = x̄− (Π̄,0)ω̃, χ̃ = x̃−12⊗ (0,Π̃)ω̃, (12)

where Π̄ = diag{Π1,Π2, . . . ,Πk}, and Π̃ = diag{Πk+1,Πk+2, . . . ,ΠN}.
The derivative of Eq. (12) is given as

˙̄χ = ˙̄x− (Π̄,0) ˙̃ω, ˙̃χ = ˙̃x−12⊗ (0,Π̃) ˙̃ω. (13)

By using ˙̃ω = 1N ⊗A0ω = (IN ⊗A0)ω̃ and combining the Eqs. (2), (7), (12) and (13),
one has

˙̄χ = Āoχ̄ + B̄oη + Ēχoω̃,

˙̃χ = Ãoχ̃ + B̃0η + Ẽχoω̃,
(14)

where
Ēχo = Āo(Π̄,0)+ Ēo− (Π̄,0)(IN⊗A0),

Ẽχo = Ão(12⊗ (0,Π̃))+ Ẽo− (12⊗ (0,Π̃))(IN⊗A0).
(15)

Let the gain matrix K2i be K2i = Γi−K1iΠi, the first equation of Eq. (11) can be rewritten
as

ΠiA0 = (Ai +BiK1i)Πi +BiK2i +Ei, (16)

then Eq. (16) can be changed into

(Π̄,0)(IN⊗A0) = (Π̄(Ik⊗A0),0)
= ((Ā+ B̄K̄1)Π̄+ B̄K̄2 + Ē,0)
= Āo(Π̄,0)+ B̄o + Ēo.

(17)

Since

12⊗ (0,(Ã+ B̃K̃1)Π̃) =

(
0 (Ã+ B̃K̃1)Π̃
0 (Ã+ B̃K̃1)Π̃

)
=

(
Ã B̃K̃1
−F̃C̃ Ã+ B̃K̃1 + F̃C̃

)(
0 Π̃

0 Π̃

)
= Ão(12⊗ (0,Π̃)),

(18)

the Eq. (16) also has a form

(12⊗ (0,Π̃))(IN⊗A0) = 12⊗ (0,Π̃(IN−k⊗A0))

= 12⊗ (0,(Ã+ B̃K̃1)Π̃+ B̃K̃2 + Ẽ)

= Ão(12⊗ (0,Π̃))+ B̃o + Ẽo.

(19)

Combining the Eqs. (15), (17) and (18) yields Ēχo =−B̄o and Ẽχo =−B̃o. Thus the Eq.
(14) can be expressed as

˙̄χ = Āoχ̄ + B̄o(η− ω̃),

˙̃χ = Ãoχ̃ + B̃o(η− ω̃).
(20)

Taking the derivative of η− ω̃ , we have

η̇− ˙̃ω = (ρHσ(t)⊕A0)η−ρ(A
σ(t)

0 ⊗ Iq)ω̃− (IN⊗A0)ω̃

= (ρHσ(t)⊕A0)η− (ρ(Hσ(t)⊗ Iq)+(IN⊗A0))ω̃

= (ρHσ(t)⊕A0)(η− ω̃).

(21)
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Let ξ = (χ̄T , χ̃T ,(η− ω̃)T )T , the combination of Eqs. (19) and (20) gives

ξ̇ = Ξ
σ(t)
o ξ , (22)

where Ξ
σ(t)
o is given in Eq. (8). The eigenvalues of matrix ρHσ(t)⊕A0 are expressed as

λ (ρHσ(t)⊕A0) = {ρλi(Hσ(t))+λ j(A0)|i = 1,2, . . . ,N, and j = 1,2, . . . ,q}.

Obviously, there is ρ < 0 satisfying that Ξ
σ(t)
o is negative semi-definite. Taking the

Lyapunov function candidate as

V =
1
2

ξ
T

ξ , (23)

the derivative of V is
V̇ = ξ

T
Ξ

σ(t)
o ξ . (24)

Combining V̇ ≤ 0 with V ≥ 0, one can obtain that V is bounded and lim
t→∞

V (t) exists. By

the Cauchy’s convergence criterion in Lemma 2, for arbitrary ε > 0, there is Mε ∈ Z+ such
that for arbitrary k > Mε ,

|V (tk+1)−V (tk)|< ε,

or ∣∣∣∣∫ tk+1

tk
V̇ (t)

∣∣∣∣< ε.

It follows that ∣∣∣∣∣
∫ t1

k

t0
k

V̇ (t)

∣∣∣∣∣+
∣∣∣∣∣
∫ t2

k

t1
k

V̇ (t)

∣∣∣∣∣+ . . .+

∣∣∣∣∣
∫ t

mk
k

t
mk−1
k

V̇ (t)

∣∣∣∣∣< ε. (25)

In light of (23), in each time subinterval [t j
k , t

j+1
k ), j = 0,1, . . . ,mk−1, we have∣∣∣∣∣

∫ t j+1
k

t j
k

V̇ (t)

∣∣∣∣∣=
∣∣∣∣∣
∫ t j+1

k

t j
k

ξ
T

Ξ
σ(t j

k )
o ξ

∣∣∣∣∣≥
∣∣∣∣∣
∫ t j

k+τ

t j
k

ξ
T

Ξ
σ(t j

k )
o ξ

∣∣∣∣∣ . (26)

Combining (24) with (25) gives

ε >

∣∣∣∣∣
∫ t0

k +τ

t0
k

ξ
T

Ξ
σ(t0

k )
o ξ

∣∣∣∣∣+ . . .+

∣∣∣∣∣
∫ t

mk−1
k +τ

t
mk−1
k

ξ
T

Ξ
σ(t

mk−1
k )

o ξ

∣∣∣∣∣ , (27)

that is, for any k > Mε ∣∣∣∣∣
∫ t j

k+τ

t j
k

ξ
T

Ξ
σ(t j

k )
o ξ

∣∣∣∣∣< ε. (28)

From (27), one has

lim
t→∞

∫ t+τ

t
ξ (s)T

Ξ
σ(t j

k )
o ξ (s)ds = 0. (29)

Since only finite switches take place during [tk, tk+1), we get

lim
t→∞

∫ t+τ

t

{
ξ (s)T

Ξ
σ(t0

k )
o ξ (s)+ . . .+ξ (s)T

Ξ
σ(t

mk−1
k )

o ξ (s)
}

ds = 0, (30)

which can be expressed as

lim
t→∞

∫ t+τ

t
ξ (s)T

Ξoξ (s)ds = 0, (31)

DOI: 10.33969/AIS.2019.11002 27 Journal of Artificial Intelligence and Systems



Cai, Y. L. et al.

where Ξo = Ξ
σ(t0

k )
o + . . .+Ξ

σ(t
mk−1
k )

o =

 lĀo 0 lB̄o
0 lÃo lB̃o
0 0 ρHΞ⊕A0

, HΞ = ∑
l
i=1 Hi.

According to Assumption 1 and Lemma 1,
⋃

t∈[tk,tk+1)
Gσ(t) has a spanning tree, thus HΞ

is positive definite. The eigenvalues of ρHΞ⊕A0 are given as

λ (ρHΞ⊕A0) = {ρλi(HΞ)+λ j(A0)|i = 1,2, . . . ,N, j = 1,2, . . . ,q}. (32)

There is ρ < 0 satisfying that all eigenvalues of ρHΞ⊕A0 are in the complex left
half plane, i.e., ρHΞ⊕A0 is Hurwitz. By the Theorem 1, Ξo is Hurwitz, then we have
limt→∞ξ = 0, i.e., limt→∞χi = 0.

Substituting χi = xi−Πiω into Eq. (3) yields

ei =C(χi +Πiω)−C0ω

=Cχi +(CΠi−C0)ω

=Cχi,

(33)

then limt→∞ei = limt→∞Cχi = 0. Therefore, the conclusion is proved.

The process to design the hybrid feedback control strategy (6) is presented in Algorithm
1.

Algorithm 1. Assuming that the Assumptions 1–3 are satisfied, then the hybrid feedback
control strategy (6) can be designed as follows

1. Choose the gain matrices K1i and Fi such that Ai +BiK1i and Ai +FiCi are Hurwitz.
2. Solve the regulator equations (11) to get Πi and Γi, then the gain matrix K2i =

Γi−K1iΠi can be obtained.
3. Choose ρ < 0 such that Ξ

σ(t)
o defined in (8) is negative semi-definite.

Here, the gain matrices K1i, K2i, Fi and regulation factor ρ are the parameters of the control
method (6).

Remark 1. Let x∗i be the difference between the system variable xi and the estimated variable
x̂i, then

ẋ∗i = ẋi− ˙̂xi

= Aixi +Biui +Eiω− (Aix̂i +Biui +Eiω +Fi(Cix̂i−Cixi))

= (Ai +FiCi)x∗i .

(34)

Because the pair (Ci,Ai) is detectable, so there exists matrix Fi such that Ai +FiCi is
Hurwitz, i.e., x∗i → 0, (t→ ∞).

Remark 2. In this paper, we consider the partial unmeasurable agents, i.e. not all agents are
measurable or unmeasurable. We only design the observer for the unmeasurable agents. For
the unmeasurable agents, we can design the reduced-order observer by introducing the state
transformation xi(t) = Tixi(t), i = k+1, . . . ,N, then the system (1) can be changed into ẋmi(t) = A11

i xmi(t)+A12
i xui(t)+B1

i ui(t)+E1
i ω(t)

ẋui(t) = A21
i xmi(t)+A22

i xui(t)+B2
i ui(t)+E2

i ω(t)
yi(t) = xmi(t), i = k+1, . . . ,N

where Âi = T −1
i AiTi =

(
A11

i A12
i

A21
i A22

i

)
, B̂i = T −1

i Bi =

(
B1

i
B2

i

)
, Ĉi =CiTi = (Ip,0) and

Êi = T −1
i Ei =

[
E1

i ,E
2
i
]′. The reduced-order observer is designed as

x̃ui(k+1) = A21
i xmi(k)+A22

i x̃ui(k)+B2
i ui(k)+E2

i w(k)+LiA12
i (xui(k)− x̃ui(k)) ,
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where Li is a constant matrix. And the distributed feedback controller can be designed as

δi(t) = ∑ j∈Ni ai j (Cixi(t)−C jx j(t))+ai0 (Cixi(t)− yri(t))
ξi(t) = ∑ j∈Ni ai j (x̃ui(t)− x̃u j(t))+ai0x̃ti(t)
η̇i(t) = G1ηi(t)+G2δi(t)
ui(t) = K1iξi(t)+K2iδi(t)+K3iηi(t), i = k+1, . . . ,N

.

where K1i ∈Rq×(n−p),K2i ∈Rq×p and K3i ∈Rq×sm are the gain matrices. θi > 0 is a parameter
to be designed. And the matrix pair (G1,G2) is the p-copy internal model. The proof process
is similar to that in [31]. Note that in above controller, the dimensions of unmeasurable
states for all agents are assumed to be the same.

5. Simulation and examples

To illustrate the theoretical results, we take the linear heterogeneous MASs with five agents
indexed by 0–4 into account. The node 0 denotes the exosystem, and the nodes 1–4 denote
the four agents. Three cases including 1) partial unmeasurable agents 2) all measurable
agents and 3) all unmeasurable agents are considered.

5.1. Numerical examples

Example 1. In this example, we take the linear heterogeneous MASs with the same
dimensions into account. The four agents are expressed as

ẋi(t) = Aixi(t)+Biui(t)+Eiω(t),

yi(t) =Cixi(t), i = 1,2,3,4,
(35)

where Ai =

(
0 1
0 −1

)
,Bi =

(
0
1

)
,Ci = [1,0] and Ei =

(
0 0
0 −i

)
.

The dynamics of the exosystem are described as

ω̇(t) = A0ω(t),

y0(t) =C0ω(t),
(36)

where A0 =

(
0 1
−1 0

)
and C0 = [1,0].

Four switching topologies G1, G2, G3 and G4 are considered in this paper, shown in Fig.
1. Suppose that the interaction topologies switch as G1→ G2→ G3→ G4→ G1→ . . .. And
the dwelling time is selected as τ = 0.5s.

(a) (b) (c) (d)

Figure 1. Communication topologies: (a) G1, (b) G2, (c) G3, and (d) G4

By the regulator equations (11), the matrices Πi =

(
1 0
0 1

)
(i = 1,2,3,4), Γ1 =

[−1,2], Γ2 = [−1,3], Γ3 = [−1,4] and Γ4 = [−1,5] can be obtained. Since the pair (Ai,Bi) is
stabilizable, there exists matrix K1i = [−6,−6] such that Ai +BiK1i(i = 1,2,3,4) is Hurwitz.
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Then K21 = Γ1−K11Π1 = [5,8], K22 = [5,9], K23 = [5,10] and K24 = [5,11]. Besides, the
pair (Ci,Ai) is detectable, there exists matrix Fi = [−8;−8] such that Ai +FiCi(i = 1,2,3,4)
is Hurwitz. Moreover, the regulation factor ρ =−1.

The experiment is conducted with random initial states. The simulation results are given
in Figs. 2–9. For case 1, the agents 1, 2 are assumed to be measurable, i.e. k = 2. Fig. 2
depicts the measurement outputs of all agents. It can be observed that the trajectories of the
measurement outputs are consistent with that of the reference output. The regulation errors
are shown in Fig. 3. One can get that all regulation errors converge to zero asymptotically.
Besides, we use e∗i =

√
‖xi(t)− x̂i(t)‖2, i = 3,4 to denote the estimation errors of MASs

(24) under the designed observer (4). Fig. 4 presents these results. It demonstrates that the
designed observer (4) can estimate the unmeasurable states x3 and x4 very well. For case
2, the obtained results are presentd in Figs. 5 and 6. We can get that the regulation errors
of four measurable agents tend to zero asymptotically. And if k = 0, the numerical results
for case 3 (i.e., all agents’ states are unmeasurable) are shown in Figs. 7 and 8. We can get
that the regulation errors of four unmeasurable agents can tend to zero. And the estimation
errors of all unmeasurable agents are depicted in Fig. 9, which indicates that the estimation
errors can tend to zero. From the above three cases, we can get that whether the states are
measurable or not, the control protocol (6) can settle the output regulation issue of linear
heterogeneous MASs under switching topology.
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Figure 2. Example 1: the measurement outputs yi(t) of five agents; the agents 3, 4 are
unmeasurable
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Figure 3. Example 1: the regulation errors ei(t) of four agents; the agents 3, 4 are
unmeasurable
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Figure 4. Example 1: the estimation errors x∗i of agents 3 and 4
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Figure 5. Example 1: the measurement outputs yi(t) of five agents
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Figure 6. Example 1: the regulation errors ei(t) of four measurable agents

Example 2. In this example, we take the linear heterogeneous MASs with different
dimensions into consideration. The dynamics and output matrices of agents 1, 2 and the
exosystem are the same as those of Example 1. The dynamics and output matrices of agents
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Figure 7. Example 1: the measurement outputs yi(t) of five agents
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Figure 8. Example 1: the regulation errors ei(t) of four unmeasurable agents
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Figure 9. Example 1: the estimation errors x∗i of four unmeasurable agents

3, 4 are described as (30) with Ai =

 0 1 0
0 0 1
0 −1 −2

 ,Bi =

 0
0
1

 ,Ci = [1,0,0] and
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Ei =

 0 0
0 0
0 −i

(i = 3,4). The matrices Πi,Γi,K1i and Fi for i = 1,2 and the regulation

factor ρ are the same as those of Example 1. The matrices Πi =

 1 0
0 1
−1 0

(i = 3,4),

Γ3 = [−2,3] and Γ4 = [−2,4]. Besides, K1i = [−6,−6,−6], Fi = [−8;−8;−8](i = 3,4),
K23 = [−2,9] and K24 = [−2,10].

Similar to Example 1, the experiment is also conducted with random initial states. The
simulation results are given in Figs. 10–17. For case 1, assume k = 2, the measurement
outputs and regulation errors are depicted in Figs. 10 and 11. From Fig. 10, we can get that
the output trajectories of four agents can track that of the external system. Fig. 11 indicates
that the regulation errors of four agents converge to zero asymptotically. Moreover, the
estimation errors of agents 3 and 4 are shown in Fig. 12. It demonstrates that the designed
observer (4) can asymptotically estimate the unmeasurable states x3 and x4. For case 2,
i.e. k = 4, the simulation results are shown in Figs. 13 and 14. It can be observed that the
regulation errors of four measurable agents asymptotically converge to zero. For case 3, i.e.
k = 0, the measurement outputs and regulation errors of all agents are presented in Figs. 15
and 16. We can get that the regulation errors of four unmeasurable agents can tend to zero.
Moreover, the estimation errors of all agents are depicted in Fig. 17. From the above results,
we can see that the proposed controller (6) can address the output regulation issue of linear
heterogeneous MASs under switching topology.
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Figure 10. Example 2: the measurement outputs yi(t) of five agents; the agents 3, 4 are
unmeasurable

5.2. Comparison example

In this section, the comparison method in [17] is used for illustrating the merits of our
controller. Moreover, the directed graph in [17] is used for comparison. The system
matrices are given as follows

A1 =

(
0 1
0 0

)
,A2 =

(
0 1
−1 0

)
,A3 =

(
0 −1
1 0

)
,A4 =

(
0 −1
0 0

)
,A5 = A6 =

A7 = A8 = A9 = A4,B1 =

(
0
1

)
,B2 =

(
1
1

)
,B3 =

(
0
1

)
,B4 =

(
0
1

)
,B5 = B6 =

B7 = B8 = B9 = B4,E1 =

(
0 0
1 −0.5

)
,E2 =

(
−1 0.5
−1 0.5

)
,E3 =

(
0 2
−1 0

)
,E4 =(

0 2
−1 1

)
,E5 = E6 = E7 = E8 = E9 = E4, and Ci = [1,0], i = 1,2, . . . ,9. The
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Figure 11. Example 2: the regulation errors ei(t) of four agents; the agents 3, 4 are
unmeasurable
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Figure 12. Example 2: the estimation errors x∗i of agents 3 and 4
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Figure 13. Example 2: the measurement outputs yi(t) of five agents

exosystem matrices A0 and C0 are given as A0 =

(
0 1
−1 0

)
and C0 = [1,0].

After simple calculation, the solutions of the regulator equations (11) can be obtained
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Figure 14. Example 2: the regulation errors ei(t) of four measurable agents
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Figure 15. Example 2: the measurement outputs yi(t) of five agents
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Figure 16. Example 2: the regulation errors ei(t) of four unmeasurable agents

Πi =

(
1 0
0 1

)
(i = 1,2, . . . ,9), Γ1 = [−2,0.5], Γ2 = [1,−0.5], Γ3 = [−1,0],

Γ4 = [0,−1],Γ5 = Γ6 = Γ7 = Γ8 = Γ9 = Γ4. The distributed control law (6) is designed
with control gains K11 = [−8,−4],K12 = [−5.5,1.5],K13 = [7,−4],K14 = [8,−4],K15 =
K16 = K17 = K18 = K19 = K14, K21 = [6,4.5],K22 = [6.5,−2],K23 = [−8,4],K24 =
[−8,3],K25 = K26 = K27 = K28 = K29 = K24. Moreover, the regulation factor ρ =−1. The
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Figure 17. Example 2: the estimation errors x∗i of four unmeasurable agents

distributed control law (7) in [17] is designed with the same gain matrices.
The comparative experiment is implemented with the same initial states

x1(0) = [2,−1]T ,x2(0) = [−2,1]T , x3(0) = [0,−2]T ,x4(0) = [0.5,−2]T ,x5(0) = [3,1]T ,
x6(0) = [−1,−1]T ,x7(0) = [3,1]T ,x8(0) = [2,−1]T ,x9(0) = [0.5,1.5]T , ω(0) = [0,0]T ,
and all other initial states are chosen to be zeros. The three-dimensional spatial output
trajectories of [17] and our paper are presented in Fig. 18. And the regulation errors of [17]
and our paper are given in Fig. 19. It can be seen that our method uses shorter time to track
the external system. Hence, our controller is superior to [17] in terms of convergence speed.
Moreover, the states of all agents are assumed to be measurable in [17]. However, in
practice, it is difficult to measure all states due to high cost or technical constraint. For the
case of unmeasurable states, the controller proposed in [17] is not applicable, while the
controller proposed in this paper can solve this problem.
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Figure 18. The 3D phase plane plot of all agents’ output dynamics of (a) [17] and (b) this
paper.

5.3. Application examples

In this section, to verify the practicability of the hybrid control protocol (6), the proposed
controller is applied to the mobile robots and mass-damper-spring systems. The
communication topology with seven mobile robots or seven mass-damper-spring systems is
shown in Fig. 20.
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Figure 19. The regulation errors ei(t) of nine measurable agents of (a) [17] and (b) this
paper.

Figure 20. The communication topology among seven mobile robots or seven
mass-damper-spring systems

In recent years, more and more research attention has been paid to the mobile robots
due to its extensive applications such as universe exploration, factory automation and ocean
development. Firstly, we consider the output regulation problem of seven mobile robots
modeled as [32]. The system dynamics of each follower mobile robot are described as

Ai =

[
0 1 0
0 0 ci
0 −di −ai

]
,Bi =

[
0
0
bi

]
,Ei =

[
0 0
0 0
0 ei

]
,Ci = [1,0,0],

where ai,bi,ci, di and ei are positive constants. The first two state components are considered
as position and velocity and the third state component is regarded as an actuator state. The
leader’s dynamics are modeled by (2) with

A0 =

[
0 1
0 0

]
,C0 = [1,0].

The system parameters fi = [ai,bi,ci,di,ei], i = 1, . . . ,6 are chosen as
f1 = [1,1,1,0,1], f2 = [10,2,1,0,1], f3 = [2,1,1,10,1], f4 = [2,1,1,1,3], f5 = [1,1,1,0,3],
and f6 = [10,2,1,0,3]. The feedback gain matrices are selected as
K1 = [−27,−27,−8],K2 = [−13.5,−13.5,0.5],K3 = [−27,−17,−7],K4 =
[−27,−26,−7],K5 = [−27,−27,−8], and K6 = [−13.5,−13.5,0.5]. Moreover, by the Eq.

(11), we have Πi =

 1 0
0 1
0 0

 , i = 1, . . . ,6,

Γ1 = [0,−1],Γ2 = [0,−0.5],Γ3 = [0,9],Γ4 = [0,−2],Γ5 = [0,−3], and Γ6 = [0,−1.5].
Furthermore, the regulation factor ρ = −1, and the distributed control law (7) in [17] is
designed with the same gain matrices.
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The comparative experiment is conducted with the same initial states as those in
section 5.2. The regulation errors of [17] and our paper are shown in Fig. 21. It can be seen
that the two controllers can be used for the output regulation of mobile robots, and our
method uses shorter time to track the external system. Therefore, the hybrid feedback
controller (6) has superior performance than [17] in terms of convergence speed.
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Figure 21. The regulation errors ei(t) of six mobile robots of (a) [17] and (b) this paper.

Secondly, we consider the output regulation problem of six mass-damper-spring systems
and one harmonic oscillator [10]. The system dynamics of each mass-damper-spring system
are given as

ÿi +giẏi +hiyi = ui, (37)

where ui and yi are the input and output of i-th mass-damper-spring system, respectively.
gi = 0.6 + 0.2i and hi = 2.5− 0.5i are the damping coefficient and spring coefficient,
respectively. Denoting xi1 = yi and xi2 = ẏi, the systems (37) can be expressed as

ẋi =

(
0 1
−gi −hi

)
xi +

(
0
1

)
ui,

yi = (1, 0)xi.

(38)

The harmonic oscillator is used for leader, and its dynamics are as follows

ẋ0 =

(
0 ϖ

−ϖ 0

)
x0,

y0 = (1, 0)x0,

(39)

where ϖ = 1.
The feedback gain matrices are selected as K1 = [−27,−27],K2 = [−13.5,−13.5],K3 =

[−27,−17],K4 = [−27,−26],K5 = [−27,−27], and K6 = [−13.5,−13.5]. Moreover, by the

Eq. (11), we can obtain Πi =

[
1 0
0 1

]
, i = 1, . . . ,6, Γ1 = [2.0,0.8],Γ2 = [1.5,1.0],Γ3 =

[1.0,1.2],Γ4 = [0.5,1.4],Γ5 = [0,1.6], and Γ6 = [−0.5,1.8]. Furthermore, the regulation
factor is selected as ρ =−1 and the distributed control strategy (7) in [17] is designed with
the same gain matrices.

The comparative experiment is also conducted with the same initial states as those in
section 5.2. The simulation results are presented in Fig. 22. One can get that the two
control strategies can be used for the output regulation of mass-damper-spring systems, and
our method takes shorter time to track the external system. Hence, our control strategy is
superior to [17] in terms of convergence speed.
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Figure 22. The regulation errors ei(t) of six mass-damper-spring systems of (a) [17] and
(b) this paper.

6. Conclusion

In this work, we have considered the output regulation problem of linear heterogeneous
MASs with partial unmeasurable states under switching topology. The agents excluding the
external system have been divided into two groups with measurable agents or unmeasurable
agents. For the unmeasurable agents, we have constructed the full-order Luenberger observer.
Moreover, a dynamic compensator has been designed for these agents that cannot obtain
the information from the external system directly. Then a hybrid control strategy with the
designed observer and compensator has been proposed to address the output regulation issue.
Simulation results have denoted that the proposed controller is feasible and promising for
the output regulation issue of linear heterogeneous MASs under switching topology. Future
research along this direction will address the output regulation issue of nonlinear MASs
with time delay under switching topology. How to choose the nodes to obtain influence
maximization is also the future research direction [33, 34].
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